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Abstract—Many distributed deep learning systems have been published over the past few years, often accompanied by impressive
performance claims. In practice these figures are often achieved in high performance computing (HPC) environments with fast
InfiniBand network connections. For average deep learning practitioners this is usually an unrealistic scenario, since they cannot afford
access to these facilities. Simple re-implementations of algorithms such as EASGD [1] for standard Ethernet environments often fail to
replicate the scalability and performance of the original works [2]. In this paper, we explore this particular problem domain and present
MPCA SGD, a method for distributed training of deep neural networks that is specifically designed to run in low-budget environments.
MPCA SGD tries to make the best possible use of available resources, and can operate well if network bandwidth is constrained.
Furthermore, MPCA SGD runs on top of the popular Apache Spark [3] framework. Thus, it can easily be deployed in existing data
centers and office environments where Spark is already used. When training large deep learning models in a gigabit Ethernet cluster,
MPCA SGD achieves significantly faster convergence rates than many popular alternatives. For example, MPCA SGD can train
ResNet-152 [4] up to 2.8x faster than state-of-the-art systems like MXNet [5], up to 1.7x faster than bulk-synchronous systems like
SparkNet [6] and up to 1.5x faster than decentral asynchronous systems like EASGD [1].

Index Terms—deep learning, distributed computing, machine learning, neural networks, spark, stochastic gradient descent
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1 INTRODUCTION

Many remarkable results in areas such as computer vision,
speech recognition or natural language processing were
achieved by training deep neural networks using GPUs.
However, training complex models on large datasets using
a single GPU can take days or even weeks.

Distributed deep learning systems can speed up training
considerably. Most existing state-of-the-art distributed deep
learning systems rely on a centralized approach, where the
worker nodes compute gradients using local replicas of
the model and submit them to an optimizer that runs in
the parameter server [7], [8]. This approach requires very
fast networking hardware, since the updated model is re-
downloaded by the workers after every optimization step.

Decentralized methods, such as Elastic Averaging SGD
(EASGD [1]) take the opposite approach, where the same
model is improved in isolation using local optimizers in
each worker. The resulting models are asynchronously
merged. This significantly reduces the communication de-
mand per worker. However, the parameter server has to
cater to each worker independently. Thus, the communica-
tion demand on the parameter server still increases linearly
with the cluster size, which can limit scalability if network
bandwidth is constrained.

High-Bandwidth, low-latency networking hardware is
able to overcome most network throughput related lim-
itations. In fact, InfiniBand and high-bandwidth Ethernet
are frequently used to demonstrate the performance of
distributed deep learning systems [1], [5], [9]. However, the
costs for the required infrastructure is still comparatively
high. In bandwidth constrained environments, most of these
systems perform significantly worse (Section 7). In contrast,

our work specifically targets commodity clusters with low
single digit gigabit Ethernet bandwidths. Note that the
capabilities of affordable GPUs for deep learning increase at
a significantly faster pace than that of networking hardware.
Thus, developing solutions that target scenarios, where the
network bandwidth is limited, is becoming increasingly
important.

Simultaneously, Apache Spark [3] has recently emerged
as one of the major standardized platforms for Big Data
analytics, because its embedded MapReduce-inspired pro-
cessing with Resilient Distributed Datasets (RDDs) excels in
cluster environments composed of low-budget commodity
hardware. However, Spark’s most powerful communication
primitives broadcast [10] and treeReduce [9], confine purely
Spark-based deep learning implementations to operate syn-
chronously [6], [11]. Thus, most Spark-based deep learn-
ing systems achieve asynchronous execution by bypassing
Spark’s highly optimized networking code [12] or bypass its
execution engine entirely [2], [5], [7].

The results we present in Section 7 show that decen-
tralized training methods outperform centralized systems
in low-bandwidth high-latency environments like gigabit
Ethernet. Thus, we will concentrate on these methods. We
will refer to the typical way decentralized optimization of
machine learning models is implemented in Spark as the
synchronized approach. As visualized in Fig. 1, the synchro-
nized approach sequentially alternates between training
(map) and synchronizing parameters (reduce/broadcast) in
order to realize collaborative model training. The synchro-
nized approach, such as that taken by SparkNet [6], is
often considered inferior to asynchronous systems [1], [2],
[13], due to two main drawbacks. First, the synchronized
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approach cannot overlap computation and communication
and, second, faster nodes need to wait for stragglers when
merging parameters.

In this paper we propose Multi-Phase Coordinated Asyn-
chronous SGD (MPCA SGD). MPCA SGD adopts features
from asynchronous EASGD [1], but still uses the highly
optimized communication primitives of Spark to maximize
the effective use of the available network bandwidth. This
contrasts with most existing deep learning implementations
in Spark, which effectively bypass Spark’s execution model
[2], [11], [12]. MPCA SGD allows communication and com-
putation to overlap in order to make the best possible use of
the available GPUs and takes various measures to mitigate
network delays and minimize wait times to improve the
collaboration between the workers. Hence, it inherits most
advantages of the synchronous approach and EASGD while
avoiding their drawbacks.

In MPCA SGD, the driver-program continuously insti-
gates the broadcasting and reduction of model parameters.
Model optimization is conducted by the workers at the max-
imum pace of the local hardware while parameter updates
are being exchanged. Thus, communication is coordinated
while computation is conducted asynchronously. Fig. 2 illus-
trates the relationship between the driver and worker mod-
els in this scenario. Note how the worker models continue
to evolve during parameter exchange. Thus, the shared
joint model state has to be fit-back into the worker models
instead of simply replacing them like in the synchronous
approach (Fig. 1). To minimize the staleness of updates
and improve concurrency, we split the model parameters
into multiple shards and then broadcast one shard while
reducing another. Updates for model shards are pro-actively
distributed, such that they are available at each cluster node
when the local model should be updated. As shown in
Fig. 3, all machines are permanently sending and receiving
at the same time. Because each worker gets dynamically
assigned certain roles during broadcast and reduction by
Spark, the available network resources are utilized at maxi-
mum efficiency. To minimize delays, individual workers can
inject updates into the reduction process irrespective of their
optimization progress. However, MPCA SGD will not be
slowed down by stragglers since it does not wait for them,
but instead compensates for their slow progress.

There are three main challenges in applying MPCA SGD
to train deep learning models on Spark. First, how to select
and merge individual shards of the joint model (aggregated
model parameters from previous reductions) into the local
state of each worker? Second, since the model is split
into shards that are exchanged separately, while all work-
ers continue optimizing the entire model asynchronously,
each worker may progress at a different pace for different
portions of the model. In addition, the driver’s state is
always stale with respect to the workers. We have to find
a balance between allowing the workers to exploit each
other’s contributions and giving them the ability to explore
the parameter space [1]. Furthermore, we have to limit the
influence of stragglers on the joint model state. Third, how
to implement coordinated asynchronous execution within
the Apache Spark framework, while preserving Spark’s
highly optimized networking and scheduling code?

We address the first challenge by dividing our overall
communication process into distinct stages and enforce a
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Fig. 1. Classic synchronous approach for decentrally training deep
learning models (•) using MapReduce. After broadcasting each worker
starts optimizing its local model replica and independently computes
updated model parameters (•) that are then aggregated during reduc-
tion to form the starting state for the next optimization cycle. Note how
communication and computation phases are interleaved.

Broadcast ReducePrepare
Broadcast

Driver

Workers  

Run Optimizer

Fig. 2. Coordinated asynchronous model training. Parameter exchange
and model optimization occur simultaneously. Workers continue to mod-
ify their local model replicas while the driver aggregates them. Using this
aggregate, the driver determines parameter updates that generalize well
across workers and shares them through broadcasting. Simply replacing
the local model would erase any optimization progress made in the
meantime. Thus, the broadcasted joint model state has to be integrated
by combining both models (Section 4.4).
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Fig. 3. Multi-Phase coordinated asynchronous model training. The
model is divided into multiple shards. The workers continuously improve
all shards of their local model replica. To maximize the utilization of the
available network I/O bandwidth and minimize the staleness of parame-
ter updates, the driver cyclically triggers the aggregation of individual
model shards, such that at any point in time a portion of the model
parameter updates is aggregated, prepared for sharing and shared with
the workers.

rigid scheduling policy that allocates each model shard to a
different stage. Furthermore, we ensure that each stage has
finished execution before advancing to the next stage (Sec-
tion 4.2). For the second challenge, we enforce limits on the
asynchronous operation to protect the local models in case
of unintended delays and constrain the local optimizers in
the workers using a penalization term. Guiding co-adapting
optimizers through euclidean distance based penalization
has already been extensively researched and works well in
practice [14], [15], [16]. We extend these ideas by varying key
parameters throughout training to encourage the workers
to explore the parameter space, but also control the degree
of divergence from the overall optimization trajectory and
accommodate slow workers (Sections 4.4 and 6.3). Unlike
Zhang et. al. [1], we cannot afford to hold back further
model improvement to minimize the staleness in updates
due to our expected long communication delays. Instead,
we extrapolate the overall optimization trajectory to ap-
proximate potential future model states (Section 4.3). To
mitigate the influence of stragglers on the joint model we
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use a simple, yet efficient weighting mechanism during the
reduction phase (Section 4.6). To address the third challenge,
we implement a message based scheduling mechanism on
top of Spark. This scheduler allows RDDs to execute code in
a Spark compliant way after their normal execution scope
ends (Section 5).

Our key contributions include:

1) Contradictory to popular belief, we show that dis-
tributed training of deep learning models can be
accomplished efficiently in low-bandwidth high-
latency environments using only the MapRe-
duce styled execution model of Spark with our
MPCA SGD approach.

2) To make MPCA SGD work efficiently, we intro-
duce novel techniques for updating parameters
asynchronously on Spark, while simultaneously ex-
changing parameters in both directions.

3) MPCA SGD significantly outperforms MXNet [5]
(state-of-the-art centralized asynchronous system)
and EASGD [1] (state-of-the-art decentralized asyn-
chronous system) in a standard gigabit Ethernet
environment.

For popular image classification problems, MPCA SGD
can produce high quality models in less time. Using a cluster
of 8 machines connected only through gigabit Ethernet, we
can reach an average prediction error of less than 10% on
the CIFAR-10 dataset for a ResNet-110 [4] model in under
30 minutes, which is 6.9x faster than a single GPU, 4.8x
faster than the state-of-the-art deep learning system MXNet,
30% faster than the synchronous approach and 18% faster
than EASGD (Section 7.1). On large scale problems such
as ImageNet-1k, MPCA SGD outperforms the synchronous
approach by up to 2.1x and EASGD by up to 1.4x for a VGG-
A [17] model and MXNet by up to 2.8x for a ResNet-152 [4]
model (Section 7.2).

This document is organized as follows. In Section 2,
we take a brief look at existing distributed deep learning
systems and establish a rough categorization. In Section 3,
we analyze the decentral synchronous and asynchronous
training methods. Based on this foundation, we then in-
troduce the idea of multi-phase coordinated asynchronous
(MPCA) execution in Section 4.2 and refine it throughout
subsequent sections to address the first two of the afore-
mentioned challenges. Then we describe how MPCA can
be implemented in Spark to address the third challenge
(Section 5). In Section 6, we discuss our experimental setup
and follow up by presenting benchmark results in Section 7.
Finally, we conclude and propose directions for further
research in Section 8.

2 RELATED WORKS

There has been a lot of existing work on distributed deep
learning. In this section, we will describe the key existing
distributed deep learning systems. We separate our discus-
sion between non-Spark-based and Spark-based systems.

2.1 Non-Spark systems
Most of the recent works in distributed deep learning
originate from the impressive results that were achieved
by Le et. al. [18] in large scale image classification. Their

system DistBelief [8] divides the cluster into parameter
servers that maintain shards of the joint model and workers
that compute and submit gradients to them. Using these
gradients, the parameter servers then apply momentum
SGD to update their shard of the joint model. Before the
workers can continue, they need to download the updated
copy of the joint model. The core ideas of DistBelief have
been re-implemented and extended many times.

Parameter Server [19], [20] added fault tolerance through
redundancy and methods to identify and limit the influence
of slow workers.

Project Adam [21] generalized this idea by organizing
the parameter servers in a Paxos-cluster [22] and minimizes
network transmission costs by moving parts of the gradient
computation into the parameter server for certain layers.

Petuum [23] introduced the idea of imposing staleness
constraints to limit asynchrony between workers in order to
improve the overall convergence speed.

TensorFlow [7] can be considered as the successor to Dis-
tBelief. Among other things, it adds automatic computation
graph optimization, which makes distributed model paral-
lelism much more practical. Abadi et. al. [7] also developed
a cost model that covers most transactions and constraints
of the cluster nodes. Thus, allowing them to determine indi-
vidual task placements by solving an optimization problem.

MXNet [5] also adds automatic computation graph op-
timization with special emphasis on improved efficiency
through memory reuse. Furthermore, MXNet features a hi-
erarchical parameter server architecture, where intermediate
nodes can act as proxy servers to others.

FireCaffe [9] runs instances of the Caffe [24] deep learn-
ing framework in parallel on multiple machines connected
through a HPC fabric. To minimize communication delays,
FireCaffe implements a custom MapReduce-inspired com-
munication protocol.

EASGD [1] decentralizes training by running separate
optimizers directly in each worker. The workers indepen-
dently exchange updates with a parameter server every
τ computation cycles. Each worker continues computing
while others exchange parameter updates with the param-
eter server. To limit divergence, workers and the parameter
server are penalized based on their euclidean distance.

GoSGD [13] implements the EASGD parameter exchange
algorithm, but abandons the concept of having an explicit
parameter server. Instead, the workers are organized in a
peer-to-peer mesh. Communication partners for parameter
exchange are selected individually every τ cycles through a
randomized gossip algorithm [25].

2.2 Spark-based systems

SparkNet [6] was inspired by FireCaffe [9], but is targeted
at low-bandwidth network environments. It implements
synchronous decentralized training. Thus, each worker runs
a separate optimizer in isolation for τ steps. The resulting
models are then reduced through averaging. Before the next
computation cycle begins, this average model is broadcasted
to all workers and replaces their local models.

DeepSpark [2] is an attempt to implement EASGD in a
commodity hardware environment on top of Spark. Due
to the vastly differing execution models, it uses a custom
communication protocol that effectively bypasses Spark



4

during training. Spark is only used to distribute and start the
actual EASGD program. However, even with tweaks such as
automatically adapting penalty coefficients, their approach
suffers significantly from poor networking bandwidth.

CaffeOnSpark [12] implements a purely data-parallel op-
timizer that works similar to DistBelief on top of Spark.
Instead, of having a dedicated parameter server role, each
worker also operates as a parameter server for a portion
of the model. Since this requires direct communication
between workers, they bypass the Spark execution model
using the MPI-allReduce communication primitive in con-
junction with RDMA (Remote Direct Memory Access).

BigDL [11] implements an optimizer similar to CaffeOn-
Spark [12]. However, instead of bypassing Spark using MPI,
they exchange parameters between workers via the Spark
block manager. BigDL uses a very efficient and largely
Spark-compliant way to exchange parameters. However, it
does so by strictly separating the gradient computation and
parameter exchange phases, which limits this approach to a
synchronous mode of operation.

To better understand these works, we discriminate be-
tween centralized and decentralized systems, which refers
to whether model training is performed on a central node or
decentrally in the workers. Except SparkNet [6], EASGD [1]
and derivative works [2], [13], all aforementioned systems
use a centralized approach, where the optimizer is run
in the parameter server. Thus, network communication is
required at each improvement step to make workers aware
of changes. In contrast, decentralized systems allow workers
to optimize their local model representation directly without
communicating with other nodes. However, they may be
forced to conduct long isolated learning phases that increase
with the cluster size, which may result in sub-optimal
convergence behavior [6]. We can also distinguish whether
gradient computations occur synchronous or asynchronous
across workers (i.e. whether a worker has to wait for all
other workers after it has processed a certain amount of
batches). Furthermore, different phases of training (parame-
ter exchange, model-updating, etc.) can either be scheduled
simultaneously for all worker nodes or not. In coordinated
systems, a driver-node instigates all workers to start training
phases at the same time, while workers in uncoordinated
systems may follow separate independent schedules. All
the systems we discussed operate either in a coordinated
synchronous [6], [9], [11], [12], [19], or uncoordinated asyn-
chronous [1], [2], [5], [7], [8], [13], [21], [23] manner. There-
fore, they either have to trade off between computation and
communication or are potentially susceptible to network
bandwidth limitations because the workers exchange pa-
rameter updates independently with the parameter server,
thus precluding the use of efficient group communication
methods [9], [10]. In contrast, our approach uses coordinated
asynchronous execution, meaning that it suffers from none
of these drawbacks.

3 ANALYSIS OF EXISTING APPROACHES FOR DE-
CENTRAL DISTRIBUTED TRAINING

In this section, we briefly analyze existing approaches for
distributed training of deep learning models in detail. In
particular, we will analyze the two major existing works that
take measures to decouple computation and communication
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Driver
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Fig. 4. Synchronous data-parallel training in SparkNet.

by allowing the workers to independently optimize their
local models (decentral training). This analysis motivates
the introduction of our proposed MPCA SGD method.

3.1 Coordinated synchronous approach (SparkNet)

3.1.1 Working principle
The idea to utilize the synchronous MapReduce commu-
nication pattern for data-parallel distributed deep learning
was published first by Iandola et. al. [9]. Their system
FireCaffe takes a centralized approach where the optimizer
is executed in the driver node. Like in a single GPU imple-
mentation, this optimizer aims to minimize the expectation
for a stochastic loss-function and a regularizer, that both
depend on the model parameters (x), through iteratively
executing stochastic gradient descent (SGD) using random
batches (ξ), drawn from a training distribution (Equation 1).

min
x

(
E [L(x, ξ)] + λ‖x‖2

)
(1)

However, the computation of the gradients for each batch is
distributed among the workers. During each optimization
cycle, the driver sends the current model to the workers
(broadcast). Then, each worker computes gradients for a
separate portion of the current batch (map). The resulting
gradients are aggregated in the driver (reduce), which ap-
plies the optimization step.

FireCaffe quickly bottlenecks on the communica-
tion costs if bandwidth is constrained [6]. In contrast,
SparkNet [6] tries to avoid this problem by taking a decen-
tralized approach. We illustrate this method in Fig. 4. Each
worker (i) improves its local copy of the model (xi) using
a separate optimizer for a specified number of iterations
(τ ) in isolation (map). Once τ iterations have elapsed, the
new model parameters are captured in a RDD and aver-
aged (R(x1,··· ,K)) in the driver using a binary reduction
tree ( ). This average model (x̃) is then transmitted back to
all workers through broadcasting (B(x̃)) and becomes the
starting point of the next optimization cycle. Spark broad-
casts [10] are conducted by forming a BitTorrent swarm [26]
using all nodes where the driver acts as the initial seeder ( ).

3.1.2 Influence of τ
The parameter τ denotes the number of optimization itera-
tions between merging model parameters. Moritz et. al. [6]
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TABLE 1
Performance figures for training various popular deep neural network architectures for image classification in our test setup (Section 6.1).

Model Size
(MiB)

Communication
(s, GbE, 8 executers?)

Batch
Size

Computation
(s/batch, 1 GPU, Adam [27])

Communication
Computation

Suggested
τ??

CIFAR-10 ResNet-110 7 1.1 64 0.095 11.6 58

ImageNet
VGG-A 491 51.1 50 0.474 107.8 539

ResNet-34 83 9.2 128 0.582 15.7 79

ResNet-152 223 23.6 32 0.809 29.2 146

?Measured using τ = 0. Note that broadcast and treeReduce overlap slightly, since workers that complete broadcasting earlier may also enter
the reduction phase sooner. Includes times required for data serialization, GPU to CPU and CPU to GPU memory transfers.

??Assuming a target communication to computation ratio of 1:5 [6].

showed that the best convergence rate (assuming no com-
munication costs) can be achieved if τ is small, such that the
workers spend only a few iterations exploring the parameter
space in isolation (map) before sharing their results, which
allows them to exploit each other’s findings (reduce & broad-
cast). However, in real-world scenarios communication does
not occur instantaneously. Thus, τ is actually a measure for
controlling how much time should be spent on improving
the local models (computation) versus synchronizing across
machines (communication). In order to make good use of
the GPUs τ has to be increased. Moritz et. al. [6] suggest
choosing τ such that the communication to computation
ratio is 1:5 (i.e. the average GPU utilization is 83.3%).

To understand what values of τ this translates to in our
gigabit Ethernet test-setup (Section 6.1), we implemented
various popular deep learning models and present the re-
spective communication and computation times in Table 1.
As can be seen, the period of isolated learning has to be
hundreds of iterations in some cases if we follow the 1:5
rule. Empirical measurements by Moritz et. al. [6] show that,
irrespective of the cluster size, such long phases of isolated
learning yield only slow convergence, due to the workers
drifting towards different local minima. This leads to contra-
dicting parameter adjustments that erase each other during
reduction and setback the optimization progress. Thus, in
the synchronous approach, any choice of τ represents a
dilemma of finding a balance between two conflicting goals.

3.2 Uncoordinated asynchronous approach (EASGD)
3.2.1 Working principle
Like SparkNet, Elastic Averaging SGD (EASGD) [1] also
takes the decentralized approach, where each worker im-
proves its local model in isolation for τ iterations. However,
unlike in SparkNet the workers operate asynchronously at
their own pace. Once τ iterations have elapsed on a worker,
it independently contacts the parameter server to exchange
updates. While one worker exchanges parameters, others
update their local models. This removes the need for global
synchronization, but also prevents the usage of efficient
synchronous collaborative communication primitives, such
as broadcast and reduce.

Note that the model parameters cannot simply be re-
placed in EASGD, since workers contact the parameter
server without coordination. Instead, EASGD merges mod-
els in a way that allows the workers to explore the parameter
space, but also prevents them from deviating too far from
the joint model state maintained by the parameter server.
This is achieved by penalizing the local models and the
parameter server model based on α

2 times their squared

euclidean distance or L2-norm (α2 ‖xi − x̃‖2). Every τ it-
erations, each worker downloads the current joint model
state (x̃t) from the parameter server and adjusts its current
local model (xit) by linearly interpolating between them at
a rate of α (Equation 2). Small α give the workers more
freedom to explore the parameter space, while large α force
them to stay close to each other and thus, make them exploit
each other’s findings. To establish elastic symmetry, which
Zhang et. al. [1] consider to be crucial for the stability of the
algorithm, the inverse update has to be applied to the joint
model in the parameter server (Equation 3).

xit+1 = xit − α(xit − x̃t) (2)

x̃t+1 = x̃t + α(xit − x̃t) (3)

3.2.2 Influence of τ
Like in the synchronous approach, τ directly controls the
amount of communication between each worker and the
parameter server by extending the isolated learning pe-
riod. Furthermore, τ and α constrain how far individual
optimizers can explore the parameter space. To realize the
parameter exchange between a worker and the parameter
server required by Equations 2 and 3, workers in EASGD
stop the optimization every τ iterations and download x̃t.
Then, they compute the update α(xit − x̃t), apply it to their
local model and send it back to the driver. The latter can
be done asynchronously while the local optimizer runs,
since there are no side-effects on the local model. Note that
since the initiative lies with the workers, all communication
is peer-to-peer. Hence, assuming all workers are equipped
with the same hardware, the optimal minimum bound for τ
is equivalent to the number of optimizer iterations it takes to
download x̃t and update the local model, times the number
of workers (K). Thus, τ has to be scaled linearly with the
number of workers. However, due to minor timing differ-
ences, some workers will eventually attempt to contact the
parameter server simultaneously, which may cause trans-
mission delays. In practice, τ must therefore be increased
to add idle time between transmissions. This allows the
parameter server to recover from minor disturbances, thus
ensuring that subsequent parameter exchange requests from
other workers can be processed promptly. However, long
phases of isolated learning (large τ ) detrimentally affect
model convergence [28] similar to SparkNet (Section 3.1.2).

4 MULTI-PHASE COORDINATED ASYNCHRONOUS
SGD (MPCA SGD)
The coordinated synchronous approach (Section 3.1) is com-
patible with Spark, but hinges heavily on choosing the right
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Fig. 5. Synchronous communication pattern (SparkNet). The horizontal
bars represent model shards that are either stored in the driver or the
workers. Colors indicate actions as follows: � means idle (no update),
� indicates that parameters are transferred from the GPU to the JVM
(e.g. if parameters should be reduced by Spark via the network), while
� stands for parameter uploads from the JVM to the GPU (i.e. the
respective model shard is updated). Phases where the workers update
their model shards by training using local optimizers are shaded �.
Notice how model training is halted during communication phases.
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Fig. 6. Single phase coordinated asynchronous communication pattern.
The cluster is either exclusively broadcasting or reducing. Because the
network bandwidth is poorly utilized, isolated learning phases are very
long. However, note how model training is only briefly interrupted in com-
parison to the significant stalling of the synchronous approach (Fig. 5).
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Fig. 7. 2-phase asynchronous communication pattern with simultaneous
broadcast and reduction. The model is split into two shards, indicated
by the two horizontal bars for both, the driver and the workers. The
parameters belonging to both shards are simultaneously trained by
the workers (�), but the repeatedly invoked broadcasts and reductions
alternate their focus. Thereby, they establish two distinct parameter
exchange cycles. One for either model shard. Unlike in the single phase
asynchronous approach (Fig. 6), broadcast and reduce are executed
simultaneously, which doubles the available bandwidth and reduces the
duration of isolated learning phases.
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Time
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Fig. 8. 3-phase asynchronous communication pattern with simultaneous
broadcast, reduction and staging of the next broadcast. Operates like
the 2-phase asynchronous communication pattern (Fig. 7), except that
the model is split into three shards with distinct parameter exchange
cycles. This further improves network utilization since the broadcast-
variable for the next model shard is prepared upfront. Thus, waiting
periods that delay further reductions as shown in Fig. 7 are eliminated.
The next broadcast/reduction-cycle can begin immediately.

τ , which in turn depends on the network speed and the
cluster size. Furthermore, each reduction cycle represents a
global synchronization barrier that requires all workers to
reach a certain state. EASGD (Section 3.2) does not require

synchronization barriers but depends on worker initiated
peer-to-peer communication, which is not compatible with
the Spark MapReduce-style execution and also less efficient,
since the communication demand with the parameter server
increases linearly with each additional worker. Thus, τ must
be scaled accordingly, which may require long phases of
isolated learning.

In this section we present our algorithm MPCA SGD,
which combines the advantages of the synchronous and
the asynchronous approach on top of Spark, but avoids
their disadvantages. Spark restricts us to master-initiated
communication patterns. Hence, we retain the general idea
from SparkNet of having communication phases that are in-
stigated by RDD-commands from the driver. But we let each
worker continue to improve its local model asynchronously
throughout these communication phases. To combine mod-
els we adopt the L2-norm based penalization approach from
EASGD, which offers an intuitive way to integrate multiple
co-adapting models with each other. Thus, our approach
completely decouples the computation and communication
aspects, thereby effectively eliminating most bottlenecks
and waiting periods of existing approaches.

4.1 Overall execution behavior
After connecting to the Spark-cluster, we create a special
RDD that we call the AgentRDD and commit one Spark
execution thread per GPU to it. We explain this RDD-
type in more detail in Section 5. Once the AgentRDD has
been fully initialized, RDDs inheriting from it may hand-off
map-tasks to the Spark threads bound by the AgentRDD.
This allows completing reduction tasks without stopping
computation upon leaving the execution scope of a RDD
partition. Furthermore, we use concurrent programming to
minimize network transfer times by allowing broadcasts
and reductions to be executed simultaneously. Thus, work-
ers may asynchronously integrate the latest broadcasted
state and continue optimizing their local models through
the AgentRDD, while model updates are reduced.

Like in SparkNet, our driver program maintains and
broadcasts the joint model (x̃). The local models (xi) are
stored in model state RDDs that can be reduced to form a
new joint model. However, instead of stopping the optimiz-
ers while the local models are being merged, the optimiza-
tion code is executed indefinitely via the AgentRDD. We call
this method coordinated asynchronous execution because the
local optimizers operate asynchronously, while all parame-
ter exchanges are coordinated by the driver node.

4.2 Multi-Phase parameter exchange
In contrast to the synchronous approach (Fig. 5), the coordi-
nated asynchronous method allows performing communi-
cation and computation in parallel (Fig. 6). However, each
communication phase still consists of a broadcast followed
by a reduction. New model parameters can only be broad-
casted after a complete reduction has occurred. Hence, there
is a synchronization barrier between both operations.

While Spark utilizes the network bandwidth of multiple
cluster nodes to accelerate broadcasts and reductions, there
is always a dominant communication direction (from driver
to workers or vice versa). In a full-duplex environment like
Ethernet, this typically means that a great fraction of the
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available network bandwidth is unused if broadcasts and
reductions are executed sequentially. We can reduce the time
required for parameter exchange round-trips with the driver
by using these resources. This will allow us to have shorter
isolated learning phases, which leads to less stale parameter
updates and better overall control during model training.

To allow broadcast and reduce to be used simultane-
ously, we slice the model into multiple shards (ẋ, ẍ, etc.) of
approximately equal size and alternate the communication
phases between them. In the simplest case, we split the
model parameters in half and let them alternate between
the broadcast and reduction phases. Thus, while the first
half of the model is being broadcasted, the second half is
being reduced and vice versa (Fig. 7). In practice, the Spark
scheduler copes very well with this communication pattern.
It adjusts the broadcasts and construction of reduction trees
to make the best use of the momentarily available network
resources. If the model shards are well balanced, the av-
erage communication delay drops by up to 30% with two
alternating communication phases.

As shown in Fig. 6 and Fig. 7, broadcasting cannot start
immediately after a reduction has been completed because a
preparation step is necessary. This preparation step consists
of computing and applying the update to the joint model
(Section 4.5), extrapolating the joint model (Section 4.3) and
constructing the broadcast variable, which involves serial-
izing the model parameters, splitting them into fixed size
chunks and registering these chunks with the Spark block
manager [10]. While none of these operations is very time-
consuming, the cumulative delay often equates to multiple
back-propagations in the workers. To avoid such delays,
we extend the previously discussed 2-phase asynchronous
communication pattern by splitting the model into three
shards of preferably the same size and regard the prepa-
ration of the next broadcast variable as another phase in our
communication cycle. Analogously to the 2-phase pattern,
the focus of the three communication phases alternates
cyclically between the three model shards. Fig. 8 illustrates
this 3-phase asynchronous communication pattern. Aside
from the split-seconds during which the focus is switched
between shards, the driver and by extension most workers
are permanently sending and receiving model parameters.
Depending on the individual model shard sizes and Spark
broadcast settings, the 3-phase asynchronous communica-
tion pattern can utilize up to 80% of the driver’s network
I/O bandwidth. Simultaneously, the Spark communication
primitives broadcast and tree-reduce ensure that network
resources across the cluster are dynamically assigned and
utilized to maximize throughput.

Note that, although it is possible to have more than
three model shards, there are only three atomic operations
that must be applied sequentially (broadcast, reduce and
preparing the next broadcast). Splitting the model into
more shards will decrease their size. Thus, broadcasting
and reducing them becomes faster. However, each Spark
operation incurs a small overhead and each additional shard
edge induces irritations during model optimization due to
misalignment issues (Section 4.4). Thus, having four or more
shards typically results in lower network utilization and
decreased overall training performance.

In Fig. 9, we present an overview of the resource usage
over time when training a large deep learning model with

Node Operation Sequence Diagram

Driver
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Fig. 9. Communication and computation resource usage over time
in MPCA SGD with 3-phase asynchronous processing (cf. Fig. 8).
The driver repeatedly broadcasts (B(...)) shards from the joint
model ( ˙̃x, ¨̃x,

...
x̃), instigates reductions of shards from the local models

(ẋi, ẍi, ...xi) and prepares the next broadcast variable simultaneously.
Since there are three workers in this example, the reduction tree depth
is dlog2(3)e. Thus, one worker can send its model shard directly to
the driver, while another has to send its corresponding shard to an
intermediate aggregator. Once the intermediate aggregator has fully
received the shard, it is combined (R(...)) with the local representation
of that shard and sent to the driver. We rely on the Spark scheduling
engine to provide a near-optimal role assignment for each transmission.
In reality, all network communication processes are more dynamic than
shown here. However, for the sake of clarity we let worker 2 permanently
act as intermediate aggregator. Note that while worker 2 receives a
model shard it will utilize its unused transmission bandwidth to assist the
current broadcasting efforts of the driver. At the same time the workers
optimize all three model shards simultaneously. However, since each
shard has its own communication cycle, which can sometimes be longer
or shorter depending on transmission delays, we maintain an iteration
counter (τ̇ , τ̈ , ...

τ ) for each shard on each worker. Unlike SparkNet and
EASGD, which require the user to preconfigure τ (Section 3), we mea-
sure this value at runtime. Further computations can be scaled using
this value (Sections 4.5 and 4.6), which allows MPCA SGD to adapt to
changes in the available network bandwidth.

MPCA SGD. Note how the workers collaborate with the
driver to accelerate exchanging parameters and how com-
munication ( / ) and computation ( ) phases overlap. Also
note how all GPUs continuously improve their respective
local models, except for the brief moments when parameter
updates have to be up- or downloaded.

4.3 Mitigating the staleness of updates

Once the driver has updated the joint model, it has to
broadcast the new state to make it visible to all workers.
Because the workers continue improving their models while
this happens, their local state will have progressed by the
time when the updated joint model has been received. If
workers use stale updates for penalizing their local models
(e.g. using the EASGD method) some progress that has
been made in the meantime could be reversed. However,
note that updates to the joint model always depend on
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aggregates over all local models. Thus, the development of
the joint model is very stable and each additional worker
improves the stability [28]. We can use this to our advantage
to improve updates shared by the driver.

ṽt = δṽt−1 + (1− δ)(x̃t − x̃t−1) (4)
x̃∗t+γ = x̃t + γṽt (5)

Instead of broadcasting the actual state of the joint model
(x̃t), we track the optimization trajectory (ṽt) by observing
the recent changes to the joint model (Equation 4) and
extrapolate x̃t along this trajectory (Equation 5) to approxi-
mate the model parameters that we expect to see during a
later reduction (x̃∗t+γ). We implement ṽt as a simple moving
average, where δ determines the rate at which changes of the
joint model state are being adopted into ṽt. By default, we
use δ = 0.8. Note that ṽt only depends on actual responses
from the workers and not on previous incarnations of x̃∗,
since that would be very unstable. The delay and smoothing
induced by δ acts as a buffer against sporadic events that
may cause the communication speed to suddenly drop or
spike. Since ṽt shrinks and increases automatically depend-
ing on the network speed, the amount by which the joint
state is projected into the future correlates with the average
number of update steps that the local optimizers apply
during a communication cycle. γ controls how far (in terms
of ṽt) the joint model state should be projected into the
future. γ = 1 equals to looking ahead one cycle, while
γ = 0 disables this feature. In practice such simple linear
extrapolations are of course inaccurate. Especially, if we
train from random values, the initial changes are large and
noisy. Thus, we typically start training using a low value for
γ that we ramp up as the model stabilizes [29].

Fig. 10a shows the influence of this linear extrapo-
lation method on model training. We trained a ResNet-
110 [4] twice in a bandwidth constrained environment with
Adam [27] using MPCA SGD on the CIFAR-10 dataset
using 8 workers. The first run was conducted without linear
extrapolation (γ = 0) and the second run with δ = 0.8
and γ = 0.7. We determine the quality of the models using
online cross validation. As can be seen, the convergence
speed is initially lower when extrapolation is enabled. This
is because we deliberately did not ramp up γ in this ex-
periment. However, the extrapolated variant catches up and
eventually surpasses its counterpart without extrapolation.

4.4 Worker model update
The optimizers in MPCA SGD adjust their local models
during parameter exchange. If we would simply replace
the local model once an update has been received, we
would effectively discard the progress made in the mean-
time. However, MPCA SGD splits the model into shards,
which are reduced and shared separately. If we increase the
number of shards, such that there are significantly more
shards than communication phases, we could freeze the
parts of the model that are currently being exchanged via
the network and focus only on improving the remaining
shards. However, in practice this does not work well for
two reasons. First, several computation steps for the frozen
portion of the model still have to be executed, which wastes
resources. Second, suddenly replacing a model shard con-
fuses optimizers with momentum based step size control

like NAG [30] or Adam [27]. This is not surprising, since
the new parameters may have different properties. After
replacing a model shard, the inputs from and outputs to
adjacent model shards will be misaligned (Fig. 10b), which
can massively increase fluctuations in signals that are prop-
agated through them. Note that this misalignment increases
with the length of isolated learning.

To avoid both problems, we let the workers continuously
update the entire model. Instead of replacing, we imple-
ment an L2-norm based penalization mechanism similar
to EASGD (Section 3.2). However, EASGD and dependent
works only penalize their local models after new parameters
have been downloaded [1]. In EASGD, this interval is fixed
and depends on τ . Thus, communication and penalization
have to be aligned around this parameter, which can lead
to conflicts (Section 3.2.2). In contrast, parameter sharing in
MPCA SGD is conducted at the maximum pace at which the
driver can collect and distribute updated model shards. The
time between two consecutive updates of the same shard
may vary depending on many factors, including influences
from other processes. Therefore, τ is determined automati-
cally at runtime (Section 4.6).

However, note that the optimal value for the model
penalization-factor (α) still depends on the length of isolated
training [28]. Since the round-trip periods vary, α has to
be scaled differently for each worker and shard during
each update cycle. While it would be possible to scale α
dynamically, we found it difficult to configure such a mecha-
nism, since it further complicates the relationship between α
and the network bandwidth and GPU performance of each
worker. Furthermore, applying uneven penalties across the
model could introduce undesired biases. However, instead
of aligning the penalization code with the communication
cycle [1], [13], we can also perform this step while up-
dating the local models in the optimizers. The benefits of
penalizing the local models directly in the optimizer loop
are twofold. First, this causes many comparatively small
adjustments, which results in a smoother overall behavior.
Notice that as long as α is small, the effects of the above
mentioned misalignment problem should be dampened as
well (Fig. 10b). Second, this method completely decouples
computation and communication and, thus, disentangles
the related hyper parameters. Regardless of the available
network bandwidth, penalization solely scales depending
on the number of updates to the local model (i.e. GPU
performance) and the distance to the projected joint model
state (Section 4.3). Thus, in MPCA SGD we may choose α
irrespective of most communication related factors.

We propose two ways to penalize the local models (xi)
based on their euclidean distance [14], [15], [16] from the
projected joint model (x̃∗t+γ ; see Section 4.3) within the
optimizer loop: Intuitively, it is possible to implement the
penalization as an L2-regularizer (Equation 6). An alterna-
tive method is to directly modify the local models before
taking an optimization step (Equation 7).

min
xi

(
EL(xi, ξi) + λ‖xi‖2 + α

2
‖xi − x̃∗t+γ‖2

)
(6)

min
xi

(
EL(xi − α(xi − x̃∗t+γ), ξi) + λ‖xi − α(xi − x̃∗t+γ)‖2

)
(7)

Both methods break the potentially large correction step
that EASGD performs down into many small steps. The
first method (Equation 6) modifies the shape of the loss-
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Fig. 10. (a) Influence of linearly extrapolating the joint model on the prediction error; (b) Tensor misalignment upon separately updating a model
shard; (c) Influence of stragglers on the prediction error if reduction is done via unweighted averaging, compared to weighted averaging using τ i.

function. Thus, penalization is applied through slightly
tilting the gradients during back-propagation. The second
method (Equation 7) gently shifts the model towards the
projected joint model state. This operation is transparent to
the remaining optimization code. In practice, both methods
can work well with MPCA SGD. However, we have found
that the first method is significantly more sensitive to the
choice of α. Thus, we will focus the remainder of the
discussion on the second method.

The penalization (xi − α(xi − x̃∗t+γ)) in Equation 7 is
executed just before computing gradients. Thus, like in
the Nesterov Accelerated Gradient (NAG) algorithm, we
first displace the model and then allow the optimizer to
devise a correction step [30]. This can also be understood
as having small force that increases with the distance to
the joint model state. Only if successive parameter updates
remain larger than this force, the model will have enough
momentum to escape the pull of the projected joint model
state. Parameter updates in diffuse directions will be largely
ignored. As a result, only parameter adjustments that gen-
eralize well across many batches are kept and submitted to
the driver. The synchronous reduction of results from all
workers ensures that only parameter adjustments, where
the majority of the workers are in consensus, have a major
influence on the next joint model state. We found that this
two-stage distillation process is critical to MPCA SGD’s
success, since it significantly reduces the variance in the joint
model and quickly produces models that generalize well.

4.5 Driver model update
In SparkNet [6] the local models are optimized in isolation
for τ iterations and then aggregated through arithmetic av-
eraging (R(x1,··· ,K) = 1

K

∑K
i=1 x

i). The aggregate replaces
the joint model (x̃t). For analytical purposes, Zhang et. al. [1]
propose a synchronous variant of EASGD with a similar ex-
ecution pattern. They suggest that blending the aggregated
local models and the previous state of the joint model (x̃t−1)
together can improve stability through time (Equation 8).
The parameter β denotes the rate at which the joint model is
being replaced. Note that setting β = Kα establishes elastic
symmetry between the workers and the driver similar to
asynchronous EASGD (Section 3.2).

x̃t = (1− β)x̃t−1 + βR(x1,··· ,K) (8)

Since MPCA SGD can be expected to exhibit a much more
dynamic runtime behavior due to not having a clear distinc-
tion between the reduction and model improvement phases,

we cannot take an analytic approach. Instead, our method
for choosing β is practically motivated. Our intuition is as
follows: If we start training from a random initialization,
the driver model does not contain any useful information.
Hence, it is in the most sub-optimal state with respect to
the optimization objective. There is no need to hold onto
that state. The optimizers in the workers, on the other hand,
immediately start programming information into their local
models. Thus, we start training with β = 1 to absorb this
information into the joint model as fast as possible. Then
we subsequently ramp down β to stabilize the overall con-
vergence trajectory. However, β must not become too small
[28]. According to our experience, having a target value of
β = 0.9 represents a good compromise between stability
and model improvement in clusters with 8 workers or less,
which is in alignment with findings by Zhang et. al. [1].

4.6 Mitigating performance deviations among workers
Workers in MPCA SGD operate at their own pace. Hence,
they may apply different amounts of updates to their local
models in the same amount of time. Sporadic performance
deviations between workers should not be an issue, since
our entire approach is based on merging slightly differently
developing models to find better generalizations. However,
if individual workers exhibit a systematically different run-
time behavior, for instance because they are equipped with
different hardware or use contested resources, they will
influence the entire cluster if the joint model state is derived
from the arithmetic average of the worker models. To miti-
gate this effect, we follow our intuition from Section 4.5 and
assume that workers that can utilize more resources have
also more thoroughly explored the parameter space. Thus,
their local models (xi) have absorbed more information than
others. By weighting results, we can scale the influence of
each worker on the next joint model state accordingly. This
allows using workers equipped with different hardware for
the same optimization task, which is a problem that has -
to our knowledge - not been comprehensively addressed
by other works in this field, although heterogeneous cluster
setups are common nowadays. We implement scaling by
measuring the number of optimization steps (τ i) that each
worker completes between reduction cycles for the same
model shard and weight their contribution to the aggregate
model proportionally (Equation 9).

R(x1,··· ,K) =
1∑K
i=1 τ

i

(
K∑
i=1

τ ixi
)

(9)
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In Fig. 10c, we demonstrate the influence of both av-
eraging methods in a situation where resources on some
cluster nodes are contested, which is a very likely scenario
in a multi-tenant system. Each time we trained a ResNet-34
to classify images using Adam on a 100-class subset of the
ImageNet dataset and determine the model quality using
online cross validation. The run without contested resources
represents the upper bound. In the two remaining test runs
3 workers also process another workload. On these nodes,
only 50% of the nominal capacity of the GPUs is available
to the deep learning task. Note how the configuration with
weighted averaging retains a higher convergence rate than
that with unweighted averaging.

5 IMPLEMENTING MPCA SGD ON SPARK

We will now discuss how MPCA SGD can be implemented
in Spark. The coordinated asynchronous execution we de-
scribed in Section 4 differs fundamentally from the bulk-
synchronous iterative MapReduce processing that is nor-
mally used to program Spark. Spark jobs are supposed
to have no side-effects after they complete. However, to
implement MPCA SGD, we have to conduct operations and
transformations during the communication phase. We will
address this issue in Section 5.1. In Section 5.2 we describe
how we realize the simultaneous broadcasting and reduc-
tion of model shards. Thereafter, we will discuss strategies
to recover from node failures in Section 5.3.

5.1 Allowing asynchronous task execution in Spark
We introduce the agent concept to enable continuous up-
dating while retaining the ability to apply MapReduce
transformations to RDDs. Agents are implemented using a
special type of RDD that we call AgentRDD, but represent
a more coarse grained long lived scheduling primitive than
ordinary RDD partitions. Each partition of an AgentRDD
contains exactly one agent. Typically, we allocate one agent
for each GPU, but the number of agents and their assign-
ment to compute-resources can be regulated independently
in each worker if desired. A custom partitioning scheme
ensures that each agent forms a persistent bond with a
specific GPU on a specific worker. Through placement hints
and inhibiting task relocation, we enforce that the num-
ber and execution locations for partitions of AgentRDDs
and dependent RDDs correlate. Partitions derived from an
AgentRDD can embed Contexts that allow pairing with the
corresponding agent. Using these contexts, it is possible to
hand-off workloads to the agent for delayed execution or
request results of previously handed off tasks. To achieve
this, agents need to be active. However, the creation of per-
sistent background-threads interferes with Spark’s resource
management. We solve this problem by ensuring during
initialization that we only bind executors if 2 CPU cores
can be exclusively allocated per agent/GPU. This allows
us to simultaneously run Spark jobs in the context of the
AgentRDD and dependent RDDs without queuing.

Fig. 11 illustrates how agents and RDDs interact dur-
ing model training. The first AgentRDD allocates the data
structures for agents and fires up their event-loops through
the Control API. This will allocate one Spark worker thread
permanently to each agent, thus marking the related Spark
executor as healthy & active, which prevents the resource
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Fig. 11. Working principle of agents during model training using a cluster
with 3 workers. We imply single-phase communication (Fig. 6). The
AgentRDD borrows its threads to the agents, which in turn service the
Message APIs and allow the state RDDs to continue model optimization
between reductions. The driver repeatedly instigates MapReduce jobs
and uses the reduction result to update the joint model. All updated
parameters are broadcasted to the workers during the following cycle.
The map-portion of each MapReduce-job forges a new RDD each time.
At the beginning of the map-function the workers locate their respec-
tive agent through YieldContexts, which are embedded in the current
state RDD. Using the Message API, they signal the agent to interrupt
optimization and download the current model state. Then they submit
updates and re-engage the optimizer. This will return a new YieldContext
that can be embedded in the next model state RDD.

management from reclaiming it. Agents operate internally
using a simple event-loop that listens to a message queue.
Through embedded contexts, dependent RDDs can locate
and access the Message API of their corresponding agents to
signal them or submit new tasks. For long running tasks,
such as optimizing a model, agents immediately return a
YieldContext after the task has been accepted. This context, is
best understood as a proxy for the future state of the model
after the optimizer is interrupted next. The YieldContext
is constructed such that it will stop the optimizer and
materialize the current model state if it is accessed for any
reason (including serialization). This allows embedding the
YieldContext in a RDD to capture the next model state
without actually knowing what this model state will be.
Thus, the content of the next RDD is not determined at
creation. But should any Spark operation attempt to access
the YieldContext, it will materialize the model state and
become immutable. Thus, subsequent queries against this
RDD will yield the same results. Should the next RDD
get destroyed for any reason, the finalization code of the
YieldContext will automatically signal the agent to stop the
optimizer at the next opportunity.

Our method of integrating coordinated asynchronous
SGD into Spark is non-conventional but achieves its in-
tended purpose while obeying the constraints imposed by
the Spark system. We effectively decouple the model up-
dating phase (map) from the global synchronization barrier
that is enforced by reductions, by handing off the model
optimization to the Spark worker threads bound by the
AgentRDD and allowing the model state to be materialized
just in time when it is required. As a result, we gain the
ability to continue computation while data is transmitted or
received via the network. Our tests show that this method
is durable enough, such that multiple models can be trained
concurrently on the same Spark-cluster for weeks alongside
other Spark applications.

5.2 Allowing simultaneous broadcast and reduction
To realize multi-phase asynchronous execution as discussed
in Section 4.2, we need to be able to broadcast and re-
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parameter exchange cycle for the second model shard (ẍ).

duce different model shards simultaneously. Notice that
we generate new RDDs as a side-effect of our continuous
invocations of map (Fig. 11). Furthermore, note that Spark
broadcasts are receiver selective, meaning that downloading
the backing variable has to be initiated from the workers. To
avoid blocking, we hand-off the receiving of broadcasted
model parameters to a background-task by wrapping the
broadcast variable into a Future and placing it along with the
YieldContext in the next model state RDD. When we return
during the next parameter exchange phase, we extract this
value from the RDD and submit it to the optimizer before
re-engaging it.

Fig. 12 depicts how ongoing parallel parameter broad-
casting is realized under these constraints in MPCA SGD.
During each communication cycle only the ID of a pre-
viously prepared broadcast variable is transmitted as we
schedule the next reduction ( 99

K). Once received by the work-
ers, they embed this newly created broadcast variable in
a Future and store it in the next model state RDD (99K).
The Future then triggers the downloading and initialization
of the variable. Simultaneously, the update received by the
previous Future is extracted and submitted to the backing
agent (•).

5.3 Recovery from node failures

Spark applications traditionally achieve fault tolerance by
either reapplying the transformations of lost partitions from
lineage information stored in the RDD, or through restoring
previous states by recalling a checkpoint (snapshot of an
RDD stored in HDFS). However, in our case each new
model state RDD depends on its predecessor and the shard
from the joint model broadcasted at the time. To minimize
delays, each worker is interrupted ad-hoc once it has re-
ceived updated parameters. To allow recomputing lost RDD
partitions from linage, we have to record the interruption
time of each worker and keep the related broadcast vari-
ables around. Thus, maintaining long lineages can quickly
consume vast amounts of memory due to the cumulative
size of the broadcasted shards. Furthermore, it should be
noted that repeating the actual transformations (i.e. the
model training) is computationally expensive. However,
frequently checkpointing the model state RDD to truncate
the linage graph is often impractical due to the amount
of storage space required (one model copy per worker).
This problem is further amplified by the fact that HDFS
achieves robustness through replication across the cluster,
which reduces the available bandwidth for training.

Therefore, we discourage using the traditional Spark
methods to achieve fail-over processing when training with
MPCA SGD. Instead, we can recover from failures as fol-
lows. There are two scenarios to consider: 1) the driver stays
alive, but a worker dies; and 2) many workers or the driver-
node have failed. For scenario 1, we simply instantiate a
new AgentRDD and initiate agent discovery. This will re-
discover the agents that are still active (i.e. optimizing the
model) and bind them to the new AgentRDD. Henceforth,
we continue training using the salvaged agents. Thus, if
a single worker fails, the new AgentRDD has simply one
partition less and model state RDDs derived from it also
have one partition less. The overall training speed is slightly
reduced. To recover from scenario 2, the driver may backup
the current state of the joint model. In our implementa-
tion, automatic backups in the driver can be realized by
adding the function DumpModel to the list of optimization
objectives. This objective writes the current model state
to a persistent storage location (e.g. RAID-drive, network-
share, HDFS, etc.). Note that objectives are evaluated asyn-
chronously. Thus, with a multi-core CPU occasional backups
of the joint model do not significantly slow down training.
Using this backup it is possible to restart the optimization
process using a different machine as the driver, or even
using a different cluster. The cluster can have a different
number of GPUs, etc. Any changes made after the most
recent backup are lost, but the amount of wasted resources
can easily be limited by adjusting the backup-frequency.
Note that upon restarting training all workers are initialized
to the restored joint model state. Thus, at first they explore
the parameter space at the same location and will propose
similar updates, which results in a reduced convergence per-
formance. However, random processes during training (e.g.
different training samples, dropout patterns, etc.) quickly
cause the workers to diverge from each other again and
explore adjacent decent trajectories.

6 EXPERIMENT SETUP

6.1 Environment

We run all experiments in a dedicated cluster that is man-
aged using Cloudera CDH 5. Our test setup consists of 8
Spark executors equipped with 2 GHz 8-core Xeon CPUs,
64 GB RAM, NVIDIA TitanX GPUs and an Ethernet band-
width of 1 Gb/s. The number of nodes utilized (K) will be
stated explicitly for each experiment.

6.2 Datasets

CIFAR-10 contains 32x32 pixel RGB images that are evenly
distributed across 10 classes. The dataset is split into a
training set with 50,000 images and a test set consisting of
10,000 images. During all experiments we withheld 5,000
images (500 per class) from the training set that we used for
cross validation purposes. All images were augmented by
subtracting the per-channel mean of the training set [17] and
applying horizontal flipping at random [31]. The training set
was further expanded by padding 4 black pixels on all sides
of each image and cropping random 32x32 patches [4].

ImageNet-1k consists of one unlabeled (100k) and two
labeled (1.3M and 50k) collections of JPEG images that de-
pict objects from 1000 classes. We use the smaller labeled set
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for testing and the larger set for training, but withhold 25k
images (25 images per class) for cross validation purposes.
Since the compressed size of the labeled images is 143 GiB,
we will stream them from a HDFS during training. All
images were scaled such that their shorter edge measures
256 pixels. We also subtracted the per-channel mean of
the training set and further augment the datasets during
training and testing by randomly flipping the images hori-
zontally and cropping random 224x224 patches [17], [31].

6.3 Implemented systems

In this section we describe the different distributed deep
learning systems that we have included in our experimental
study.

The synchronous approach applies synchronous decen-
tralized training as discussed in Section 3.1. Our imple-
mentation uses Spark broadcasts and binary reduction trees
to speedup communication. Unless stated differently, we
configure the length of isolated training (τ ) according to
Table 1, such that the average GPU utilization is 83.3% as
suggested by Moritz et. al. [6].

EASGD [1] applies asynchronous decentralized training
as discussed in Section 3.2. As suggested by Zhang et. al. [1],
we establish elastic symmetry during all experiments by
choosing α = 0.9

K . To minimize communication delays
due to overlapping parameter exchange requests from the
workers, we select τ approximately 30% higher than the
theoretically optimal value.

Apache MXNet [5] is a state-of-the-art centralized dis-
tributed deep learning system that supports synchronous
and asynchronous execution. For each experiment, we will
only report numbers for whichever mode worked better
and indicate this explicitly. To maximize the utilization of
the available network bandwidth, we let each of our K
workers take over parameter server functions for 1

K of the
model. MXNet and our deep learning package Inferno use
the same cuDNN [32] version to schedule processing on the
GPU. Like other deep learning systems that rely on cuDNN,
both systems exhibit approximately the same single GPU
performance [33].

MPCA SGD is our multi-phase coordinated asyn-
chronous execution method as discussed in Section 4. This
approach does not require balancing computation and com-
munication manually. Since we penalize the local mod-
els every time an optimizer updates the model, penalties
(Section 4.4) stack automatically depending on the indi-
vidual performance of each worker. The countermeasures
we take to mitigate staleness (Section 4.3) further improve
the effectiveness of this training method. To maximize the
convergence performance, we have to balance exploration
and exploitation (Section 3.2) by choosing α (Equation 7).
Like in EASGD, a sub-optimal value for α results in re-
duced convergence performance [28]. But in contrast to
Kim et. al. [2], we found that complex fine-tuned parameter
schedules for α are not necessary in MPCA SGD. Usually, a
broad corridor of values for α exists that works reasonably
well. To find this range of values, we suggest performing
a grid search over α using a significantly reduced training
dataset, while keeping all other parameters the same. We
will discuss specific configuration choices separately for
each experiment.

However, note that one exception exists where estab-
lishing a special schedule for α can significantly speedup
convergence. If we begin training from a random initializa-
tion, the entropy is maximized. Each worker will explore
different parts of the parameter space depending on the
sequence of samples it chooses. At this point in time we
cannot know which decent trajectory will work well. Thus,
we suggest to always begin training with α = 0. This
allows the local optimizers to examine the loss function
independently and come up with better model parameters.
After a couple of iterations, the joint model contains a more
informed state that reflects adjustments that a majority of
the workers found useful. If we would continue like this,
the workers would eventually diverge. Thus, next we force
all workers to quickly adopt coherent decent trajectories by
setting α to a high value (e.g. 0.5). Then, we subsequently
decay this value until we arrive at the first value of our
actual parameter schedule.

6.4 Implemented models
ResNet-110 [4] is a model for classifying images from the
CIFAR-10 dataset. It is based on the concept of having
shortcut connections in parallel with convolutional layers
to learn residual functions. ResNet-110 makes heavy use of
batch normalization, which allows stacking residual blocks
very deep. However, its size is only 6.7 MiB. Thus, it can
be distributed and reduced quickly in our test environment
(Table 1). We therefore expect all implemented deep learning
systems to perform similar when training this model.

ResNet-152 [4] is a 152-layer ResNet-variant designed
for the ImageNet dataset. It requires a lot of memory during
back-propagation. This tightly limits the maximum mini-
batch size that can be used. Therefore, we expect that this
model will benefit significantly from distributed training.

VGG-A [17] is the smallest variant of a popular modular
network design to classify and localize objects in images.
Due to its model size of approximately 500 MiB, a full
parameter exchange for a VGG-A via Ethernet can take
many seconds (Table 1). Thus, we expect that centralized
and synchronous deep learning systems will perform signif-
icantly worse than MPCA SGD and EASGD for this model.

6.5 Initialization, optimizer and hyper-parameters
We initialize all random seeds identically at the beginning
of each experiment. For implementations based on our
platform this will result in exactly the same initialization
of the model parameters. However, the runtime behavior of
EASGD, MPCA SGD and some cuDNN operations is not de-
terministic [1], [32]. Thus, the training performance may still
vary slightly across training runs. Due to its fundamentally
different inner workings, the initial state of the model when
training with MXNet will be different. However, in both
cases all parameter values are sampled from a Gaussian
distribution with the same properties and then scaled as
suggested by He et. al. [34].

Classic optimizers like momentum SGD require com-
plex learning-rate schedules to operate well. However, the
optimal learning-rate schedule might be different for each
distributed configuration. To allow comparisons, we will
use the Adam [27] optimizer, since it is fast, adaptable and
well-known for its robust hyper-parameters. Furthermore,
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Fig. 13. Training performance for ResNet-110 on the CIFAR-10 dataset using different deep learning implementations.

we will only set modest optimization goals, that we can
comfortably reach using a constant learning rate.

6.6 Evaluation metric

For image classification, the major metric of interest is the
correctness of the predictions of the classifier. Hence, for all
our experiments, we will report the average class prediction
error on the test set. For each experiment, we will set a
goal for the prediction error and stop training shortly after
reaching that goal. We will use the wall time it takes to
reach a certain average prediction error as the measure for
performance comparisons. Hence, if a deep learning system
can reach the same average prediction error in half the time,
we regard it as twice as fast.

Instead of reaching state-of-the-art accuracies our objec-
tive is to compare the rate of convergence between different
distributed deep learning systems. To reach state-of-the-art
accuracy would require hand tuning hyper parameters for
each model and distributed system [35], which will make
the results less comparable. Therefore, we followed estab-
lished best practices when choosing hyper parameters and
tried to keep as many variables (e.g. system environment
and hyper parameters) as possible the same within and
across experiments. Furthermore, we chose optimization
goals such that they represent a decent challenge but can
also be reached reliably regardless of factors such as the
initialization seed of the model. In particular our target
errors are 10% and 40% top-1 class prediction error for
CIFAR 10 and ImageNet-1k respectively. We note that many
papers that analyze the algorithms we compare against
target similar or lower accuracies (e.g. [1], [6], [28]).

7 MAIN EXPERIMENTAL RESULTS

7.1 CIFAR-10

We chose fitting a ResNet-110 model for this task. Our
tests with single machine implementations indicate that
we can comfortably reach a test error of under 10% using
Adam with a learning rate of 0.001. We also found that
using L2 regularization (λ = 0.0001) stabilizes training and
improves reproducibility. Using grid search, we determined
that a batch size of 64 allows us to reach the target average
prediction error the quickest. Fig. 13a depicts the best out of
5 training runs with different deep learning systems.

Since ResNet-110 is a comparatively small model, we
can choose a small value for τ and still achieve a high
GPU utilization when using the synchronous approach. In

all experiments, the synchronous approach converged sig-
nificantly faster than its single GPU counterpart. However,
over time the communication delays add up. With respect to
our considerations from Section 6.3, the minimal permissible
value for τ in EASGD is 7 for our test-setup. However,
due to overheads in our implementation τ = 20 (97%
average GPU utilization) works best, but is still slightly
slower than MPCA SGD. MXNet performs rather poorly,
especially in the later stages of the optimization. This can
partially be explained with conflicting gradients calculated
by the workers due to the staleness of their local models
[23]. Note that learning algorithms that employ methods to
mitigate this staleness exist [36], [37]. However, in our tests
plain Adam always outperformed such methods. The major
problem in our environment was that MXNet is network
I/O bound. This is not surprising, since executing the back-
propagation algorithm can be performed in about 90 ms.
But even if all 8 workers share the parameter server role, 7

8
of the gradients (5.9 MiB) still have to be pushed to remote
locations and the respective updated parameters have to be
fetched remotely as well. Assuming perfect scheduling and
no wait times, the remote parameter exchange procedure
takes at least 104 ms using gigabit Ethernet. This mismatch
will be a reoccurring problem in all further experiments
as well. Using larger batches decreases the variance in the
gradients - albeit at an exponentially decaying rate [38] - and
can improve GPU utilization in MXNet. However, we found
that increasing the batch size does not significantly change
the outcome in terms of convergence speed.

MPCA SGD is not affected by any of these considerations
and converges slightly faster than the other methods. Espe-
cially, during later optimization stages MPCA SGD manages
to reduce the prediction error faster than all other methods.
During this experiment, MPCA SGD continuously improves
the entire model in the workers, reaching a near 100%
utilization of the computation hardware. By breaking the
model into 3 shards, alternating between the communica-
tion stages for each of these shards and projecting the joint
model along the overall optimization trajectory (γ = 0.7,
δ = 0.8), we ensure that the local representation of the joint
model in all workers is the same and as current as possible.
To merge the models in the driver, we ramp β (Equation 8)
down using a constant factor from 1.0 to 0.9 throughout
the first 20 parameter exchange cycles. For integrating up-
dates into the local models of the workers (Equation 7), we
implement the early schedule described in Section 6.3 and
set α = 0.05 for the remainder of the training. Note that
penalization is applied per iteration in MPCA SGD and not
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Fig. 14. Comparison of convergence performance for a ResNet-152 on the full ImageNet-1k dataset.

per parameter exchange. Due to the fast computation speed
of the GPUs, penalization is applied 13-17 times between
two consecutive updates of the same shard. Thus, we penal-
ize our models stronger than EASGD, but converge slightly
faster. When we tried higher penalization coefficients for
EASGD training slowed down. Our measurements suggest,
that MPCA SGD’s feature of projecting the joint model state
is responsible for this advantage.

Fig. 13b shows the relative speedup over our single GPU
implementation, when training using distributed systems
with 8 GPUs. During the entire experiment, MPCA SGD
convergences faster than all alternative approaches. Eventu-
ally, MPCA SGD reaches a stunning 6.9x speedup.

To demonstrate the scale-out performance of
MPCA SGD, we repeated this experiment using different
cluster sizes (Fig. 13c). Unfortunately, we do not have the
resources to test MPCA SGD on larger clusters. However,
as can be seen, the impact of adding resources diminishes
only slowly. This gives us confidence that MPCA SGD may
have further scaling potential.

7.2 ImageNet-1k
ResNet-152 and VGG-A require vast amounts of memory
during back-propagation. Hence, we restrict ourselves to
using a batch size of 32 for ResNet-152 and a batch size
of 50 for VGG-A. Using a single GPU, both networks can be
optimized well with Adam if we set both the learning rate
and L2 regularization factor to 0.0001. Due to our limited
resources, we stop training once the average prediction error
drops below 40%, which is already a quite challenging task.
However, as we have seen in the CIFAR-10 experiment
(Section 7.1), MPCA SGD also holds up well during later
training stages.

7.2.1 ResNet-152
Fig. 14a depicts the training progress over time for ResNet-
152 and Fig. 14b shows the corresponding relative speedups
in comparison with a single GPU implementation. The sin-
gle GPU implementation takes just a bit less than 100 hours
to arrive at a test error of 40%. As expected, all distributed
implementations perform faster. However, the synchronous
approach suffers severely, due to the long periods of isolated
learning required to achieve a decent GPU utilization [6].
For EASGD, we can choose a significantly smaller value for
τ . τ = 50 yields an excellent average utilization of our com-
putation hardware of approximately 95%. As can be seen,
EASGD starts out slower than the synchronous approach,

but eventually surpasses it as it becomes more difficult to
make further progress. Because of the greater mismatch
between computation and communication, MXNet suffers
even more severely from the limited network bandwidth
situation than in the CIFAR-10 experiment and converges
only marginally faster than the single GPU implementation.
Yet again, this demonstrates the severe limitations that sys-
tems with central optimizers face in limited bandwidth en-
vironments. MPCA SGD trains the same model significantly
faster than all other methods throughout the entire experi-
ment. To achieve this result, we parameterized MPCA SGD
like in our CIFAR-10 experiment, which resulted in a near
100% GPU utilization. However, EASGD also makes good
use of the computation hardware. So this cannot explain
this significant performance deviation. However, note how
MPCA SGD already performs faster early on (Fig. 14b).
Our tests suggest that this advantage can be attributed to
the relatively frequent sharing (i.e. exploiting) of parameter
updates in combination with the synchronous nature of our
algorithm that limits the influence of individual decisions
by workers that are not shared by others. Our mechanism
to project future joint model states seems to boost the local
optimizers and helps them to quickly traverse descent paths
that generalize well.

7.2.2 VGG-A

VGG-A is more than two times larger than ResNet-152, but
computes about twice as fast. Thus, we expect to see the
most extreme numbers in this experiment. Fig. 15a shows
the training progress over time. For the single GPU imple-
mentation, further improvement of the model diminishes
rapidly as the training progresses and it becomes more
difficult to find parameter adjustments that generalize well.
Since it was foreseeable that the single GPU implementation
would require hundreds of hours to reach an average pre-
diction error of 40%, we gave up training after 75 hours. For
the synchronous approach, we attempted choosing τ = 500
to retain a communication to computation ratio of 1:5 (Ta-
ble 1). However, this did not work well. Depending on the
initialization seed, the model did either not converge, or
improved only at a very slow pace. With some trial and
error, we found that τ = 100 works reliably. Of course this
is wasteful, because the GPUs sit idle for approximately 1

2
of the training time. Note how the synchronous approach
improves even slower than the single GPU implementation
for a couple of hours. However, having more resources for
exploring the parameter space eventually helps as the op-
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Fig. 15. Comparison of convergence performance for a VGG-A on the full ImageNet-1k dataset.

TABLE 2
Average training time for various deep learning models across several

training runs using different random initializations.

Model
Test

Error
Single
GPU

Sync.
Approach EASGD

MXNet
(async.)

MPCA
SGD

ResNet-110
(avg. of 5 runs)

50% 179 s 103 s 112 s 165 s 109 s
30% 457 s 252 s 260 s 322 s 255 s
10% 10429 s 2559 s 2070 s 7361 s 1841 s

ResNet-152
(avg. of 4 runs)

60% 20.9 h 11.5 h 12.3 h 18.7 h 8.9 h
50% 38.4 h 16.9 h 18.0 h 32.7 h 13.7 h
40% 103.1 h 30.9 h 27.2 h 55.4 h 22.1 h

VGG-A
(avg. of 4 runs)

60% 10.2 h 11.2 h 9.4 h ?19.2 h 6.7 h
50% 26.7 h 24.4 h 14.1 h ?36.0 h 10.5 h
40% - 78.4 h 53.4 h ?62.5 h 32.0 h

? This model was trained without L2 regularization (Section 7.2.2)

timization difficulty increases. In contrast, EASGD achieves
a decent GPU utilization of 90% with τ = 95. According to
our tests, this value approximately represents the minimum
boundary for our test-setup, such that workers do not
significantly stall each other when exchanging parameters
with the parameter server. MXNet was not able to improve
beyond random guessing if asynchronous updating and
L2 regularization were simultaneously enabled. However,
using L2 regularization together with synchronous updating
worked flawlessly. Synchronous updating requires a full
parameter exchange between all workers and the parameter
servers after each model update. The large model size in
combination with the frequent parameter synchronizations
lowers the overall training speed significantly. The average
throughput per worker dropped to less than 10 samples
per second, which is less than the capacity of the single
GPU implementation. Thus, although MXNet had 8 times
more resources available in this experiment, the single GPU
implementation outperforms it. We gave up synchronous
training after 75 hours because we could not reach the
target test error. Training using asynchronous model up-
dates worked only when we disabled L2 regularization.
Asynchronous MXNet reached the target test error after
61.2 hours. However, we advice caution when interpreting
these results, since the overall convergence behavior can
change considerably without regularization.

MPCA SGD is most efficient if the model can be broken
into three shards (Section 4.2). Unfortunately, our deep
learning system only supports splitting the model param-
eters along layer boundaries. This makes it impossible to
have evenly sized shards for VGG-A, since the majority of
parameters belong to the first fully connected layer. There-
fore, we decided to split the model only into two shards and

use 2-phase coordinated asynchronous processing (Fig. 7).
The first shard contains only the parameters associated
with the first fully connected layer, and the second shard
covers all remaining parameters. While this leads to sub-
optimal network I/O efficiency, MPCA SGD still performs
noticeably better than the synchronous approach, EASGD
and MXNet throughout the entire experiment. We can reach
an average test error of 40% after approximately 27.5 hours.
The slope at this time is still more steep than that of the
synchronous approach, which requires more than 70 hours,
and EASGD, which requires 47.5 hours, to reach the same
accuracy. We used the same hyper parameters like in the
ResNet-152 experiment (Section 7.2.1), except for α, which
we reduced to 0.005. We determined this value through a
grid search using 10% of the dataset.

In Fig. 15b, we report the corresponding relative
speedups over the single GPU implementation. Note how
the advantage of MPCA SGD over other implementations
increases consistently throughout the entire training run.
Using 8 machines, we achieve an average prediction error
of 47% six times faster than the single GPU implementation.

7.3 Overall Results
To confirm our findings, we repeated all experiments several
times using different random initializations. Of course, some
variance between different training runs can be expected.
However, especially during the ImageNet experiments, we
observed very similar convergence trajectories after a couple
of hours of training. The worst attempt typically deviated
less than 15% from the average. Except when training VGG-
A with MXNet (Section 7.2.2), we had no issues where the
model did not converge at all.

In Table 2, we present the average times required to
reach a certain prediction error on the test-set with different
deep learning systems. The synchronous approach typically
converges fast early on. In the ResNet-110 experiment it
even beats all other methods. However, this advantage is
marginal and vanishes quickly because the synchronous
approach suffers from three problems. 1) the communica-
tion delays require choosing large τ (Section 3.1.2); 2) the
communication delays add up over time and; 3) as it be-
comes more difficult to make further progress, the direct
replacement of model parameters induces non-continuous
changes, which can distract advanced optimizers (Sec-
tion 4.4). EASGD shows a more consistent behavior but
eventually always converged slower than MPCA SGD. We
believe that this can also be attributed to the dilemma
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that we have to choose high values for τ in our low-
bandwidth environment to retain a high GPU utilization
(Section 3.2.2). MXNet suffers from its frequent communi-
cation needs. But it also showed a comparatively inconsis-
tent behavior throughout our experiments. A look at the
network utilization of the workers reveals that this can at
least be attributed partially to the fact that sometimes the
workers align themselves nicely when communicating with
the parameter server and sometimes they do not, which
causes subsequent operations to be delayed. Our proposed
method MPCA SGD adapts to the network bandwidth and
takes measures to mitigate delays and deviations. During
all experiments, it maintained a convergence rate that was
either on par with or higher than that of other methods.

8 CONCLUSION

In this paper we presented a technique that combines the
advantages of synchronous and asynchronous decentralized
SGD-based model training. Like asynchronous systems,
MPCA SGD overlaps computation and communication, but
it can also take advantage of synchronous communication
primitives, such as broadcast and reduce. To our knowledge,
MPCA SGD is the only system that combines asynchronous
decentral optimization of deep learning models on Spark
with its decentralized synchronous MapReduce execution
engine to realize collaborative training. We would like to
emphasize that, except for low-level operations such as
matrix multiplications, our entire system runs in the Spark
executor JVMs and can be executed directly on top of free
off-the-shelf Spark/Hadoop distributions such as Cloud-
era CDH.

Recently, TensorFlow [7] demonstrated that they can
achieve near linear speedups for up to 64 GPUs. However, in
contrast to our work these results were achieved using high-
bandwidth networking hardware. Our experiments show
that MPCA SGD converges faster than existing methods in
bandwidth constrained environments, which is becoming
increasingly more important as the performance of GPUs
continues to increase rapidly relative to that of network-
ing hardware. MPCA SGD achieves this by decoupling
computation and communication to make the best use of
all available resources. Unlike SparkNet and EASGD, we
continuously exchange parameters for different portions of
the model. Furthermore, we use L2-penalization to gently
guide the local optimizers and allow them to explore the
parameter space, avoid divergence from the joint model
and distill parameter adjustments that generalize well. To
increase the effectiveness of these measures, MPCA SGD
mitigates performance deviations and takes advantage of
the synchronous nature of Spark reductions by utilizing the
decreased variance in the aggregated model to lower the
impact of stale updates.

The experimental results presented in this paper were
focused towards solving image classification problems us-
ing CNN-based models. This problem domain is frequently
used to demonstrate the capabilities of distributed deep
learning systems [1], [6], [8] because it involves training
large models (Big Parameters) on vast amounts of training
samples (Big Data). An interesting area for future work
would be to test and tune MPCA SGD for other problem
domains and types of deep learning models, such as recur-
rent neural networks and memory networks. Furthermore,

we believe that the simple linear extrapolation we used
to project the joint model state is far from being perfect.
It might be useful to look into more structured methods,
such as those employed to mitigate delays in centralized
systems [37]. Considering the implementation, it might be
interesting to decentralize certain aspects of the parameter
server role [11]. Furthermore, domain specific compression
techniques, like the discretization of relative weight changes
[39], might be useful to shrink the model size during net-
work transmissions to speedup parameter exchanges.
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