
ORIGINAL ARTICLE

The detection, tracking, and temporal action localisation of swimmers
for automated analysis

Ashley Hall1 • Brandon Victor1 • Zhen He1 • Matthias Langer2 • Marc Elipot3 • Aiden Nibali1 •

Stuart Morgan4

Received: 17 December 2019 / Accepted: 27 October 2020
� Springer-Verlag London Ltd., part of Springer Nature 2020

Abstract
It is very important for swimming coaches to analyse a swimmer’s performance at the end of each race, since the analysis can then

be used to change strategies for the next round. Coaches rely heavily on statistics, such as stroke length and instantaneous

velocity, when analysing performance. These statistics are usually derived from time-consuming manual video annotations. To

automatically obtain the required statistics from swimming videos, we need to solve the following four challenging computer

vision tasks: swimmer head detection; tracking; stroke detection; and camera calibration. We collectively solve these problems

using a two-phased deep learning approach, we call Deep Detector for Actions and Swimmer Heads (DeepDASH). DeepDASH

achieves a 20.8% higher F1 score for swimmer head detection and operates 6 times faster than the popular Faster R-CNN object

detector. We also propose a hierarchical tracking algorithm based on the existing SORT algorithm which we call HISORT.

HISORT produces significantly longer tracks than SORT by preserving swimmer identities for longer periods of time. Finally,

DeepDASH achieves an overall F1 score of 97.5% for stroke detection across all four swimming stroke styles.

Keywords Object detection � Tracking � Temporal action recognition � Deep learning � Convolutional neural networks

1 Introduction

Swimming coaches depend on stroke count, instantaneous

velocity, stroke rate and distance per stroke per sections of

the race to analyse the performance of athletes. Currently,

these statistics are manually annotated from video at great

expense. Using computer vision algorithms to automati-

cally annotate races will significantly scale up the anno-

tation of swimmers. Using an algorithm to determine the

real-world coordinates of swimmers can also improve

consistency as manually estimating velocity from a 2D

image is error-prone.
We thank the Australian Institute of Sports, Swimming

Australia and Optus for providing the research innovation

grant used to carry out this research.

& Zhen He

z.he@latrobe.edu.au

Ashley Hall

ash.hall@latrobe.edu.au

Brandon Victor

b.victor@latrobe.edu.au

Matthias Langer

matthias@kanzhun.com

Marc Elipot

marc.elipot@ausport.gov.au

Aiden Nibali

a.nibali@latrobe.edu.au

Stuart Morgan

Stuart.Morgan@ausport.gov.au

1 Department of Computer Science, La Trobe University,

Bundoora, Australia

2 Career Science Lab (CSL), BOSS ZhiPin, Metzingen,

Germany

3 Swimming Australia, Canberra, Australia

4 Australian Institute of Sport, Canberra, Australia

123

Neural Computing and Applications
https://doi.org/10.1007/s00521-020-05485-3(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0003-0302-5775
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-020-05485-3&domain=pdf
https://doi.org/10.1007/s00521-020-05485-3

In this project we take a video of the entire pool and use

computer vision algorithms to automatically track each

swimmer and detect each stroke. Using this information we

can derive the stroke count, instantaneous velocity in the

x-axis (along the swimming lane), and distance per stroke

for each swimmer. This requires solving the following four

computer vision problems: object detection, tracking,

temporal action localisation, and camera calibration. It is

very challenging to solve all four problems in near real

time for all swimmers in a race. We use a two-phased deep

learning model to simultaneously detect the swimmers and

their actions: creating swimmer head proposals, then

refining, and detecting strokes. We then apply a tracking

algorithm to associate the head locations across time to

track the swimmers. Using calibrated camera parameters,

we are able to project the image-space tracks into 3D pool

space and extract useful analytical metrics with real-world

units. We name our overall system Deep Detector for

Actions and Swimmer Heads (DeepDASH).

Deep learning algorithms are central to the success of

DeepDASH. Recently, deep learning algorithms have been

successful in a wide range of application areas, including

object detection [9, 18, 38, 40], multi-object tracking

[42, 57], credit scoring [36, 37], authentication [17],

activity recognition [48], etc.

Figure 1 shows the output of DeepDASH run on pre-

viously unseen video, where the white lines are the model-

estimated trajectories, and the blue circles are the model-

estimated swimmer head locations of when strokes occur.

Although the model is not perfect, it achieves high accu-

racy for the vast majority of predictions. The relatively

small swimmers, glare from the sun, and occlusions from

audience and camera operators make the task challenging.

Similarly to the popular Faster R-CNN [40] object

detection model, our deep learning model uses distinct

proposal and refinement phases. We found the use of the

refinement phase improves swimmer head detection

accuracy dramatically, almost doubling the F1 score.

Object detection in DeepDASH differs from Faster R-CNN

by exploiting contextual information from multiple input

frames, predicting point locations rather than bounding

boxes, and using a different non-maximal suppression

method. Our head detection algorithm outperforms Faster

R-CNN [40] by 20.8 F1 score and is more than sixfold

faster. This shows the benefits of using a custom object

detector instead of an off-the-shelf alternative like Faster

R-CNN.

Due to the need to track all swimmers in a race in near

real time, we have to use a fast tracking algorithm, such as

Simple Online and Realtime Tracking (SORT) [4]. How-

ever, we found that SORT produced many disjoint short

tracks. We therefore developed the hierarchical SORT

algorithm (HISORT) which iteratively joins shorter tracks

created by SORT using increasingly more relaxed joining

constraints. HISORT produces significantly longer tracks

than SORT. This is evidenced by improving the IDF1

tracking metric [25] (how well identities are preserved on

tracks) from 60.4 to 74.1

To count strokes and stroke length we need to know the

exact moment when each stroke starts. We frame this as a

temporal action localisation problem. We follow the work

by Victor et al. [49] and turn the binary labels (start of

stroke or not) into a smooth signal in the shape of a trun-

cated sinusoid. In the refinement phase of DeepDASH we

use multitask learning to simultaneously compute the

stroke probability of the swimmer as well as the swimmer’s

head location. This minimises additional computational

overhead for predicting stroke probabilities and achieves

more than 97% F1 stroke prediction accuracy across all

four stroke styles.

We make the following key contributions:

1. Most existing works solve a single computer vision

problem, in contrast this paper proposes DeepDASH

which collectively solves the challenging tasks of

swimmer head detection, tracking, stroke detection,

and camera calibration.

2. We propose a novel CNN based solution which is

significantly more accurate than Faster R-CNN for

swimmer head detection.

3. We propose a tracking algorithm called hierarchical

SORT (HISORT), which produces significantly longer

tracks than the popular SORT tracking algorithm.

4. We show that DeepDASH detects and tracks all

swimmers in a race faster than real time.

The rest of the paper is organised as follows. We present

the related works in Sect. 2. Section 3 describes how

DeepDASH solves the four problems: swimmer head

location tracking; stroke detection; swimmer tracking; and

2D image space to 3D pool space projection. Section 4

Fig. 1 Example tracking and stroke detection results on a previously

unseen video. The white lines are the model-estimated trajectories,

and the blue circles are the model-estimated locations when a stroke

occurred (colour figure online)

Neural Computing and Applications

123

describes the experimental setup. Section 5 describes the

experimental results comparing DeepDASH to alternatives.

Finally, in Sect. 6 we summarise our findings and discuss

areas of future work.

2 Related works

In this section we review existing work in object detection,

multi-object tracking and temporal action localisation for

untrimmed video. In addition we review existing work on

applying computer vision techniques to swimming

analysis.

2.1 Object detection

The aim of object detection is to predict a bounding box for

every object and its associated class from an image. All

recent high performing object detection algorithms use

deep learning models and can be broadly categorised as

either two-stage detectors or one-stage detectors.

Two-stage detectors first output region proposals, fol-

lowed by refinement to produce bounding boxes and

associated classes. R-CNN [15], Fast R-CNN [14], Faster

R-CNN [40], Mask R-CNN [18], and feature pyramid

networks [29] have progressively improved the accuracy

and speed of two-stage object detection algorithms.

One-stage object detectors such as YOLO [38],

YOLO9000 [39], SSD [31], RetinaNet [30], CornerNet

[23], FCOS [45], and CenterNet [9] predict the object

bounding boxes and class in a single step without explicit

region proposals. Hence, they are usually faster than two-

stage predictors. However, they are not as accurate as the

best two-stage detectors.

In this paper we propose a two-stage object detector that

is fast enough to run in real time. In contrast to most

existing approaches, we take multiple input frames and

output the coordinates of each swimmer’s head instead of

the coordinates of a bounding box. Thus, our detector uses

information from adjacent frames to estimate the head

location of the middle frame, and this mitigates the nega-

tive effects of occlusion caused by water splashes. Our

pointwise detection approach allows us to directly position

the swimmer within the pool.

Generic object detection datasets have a wide range of

object sizes and shapes, and many generic object detectors

[18, 39, 40] use several differently sized anchor boxes as an

initial guess of an objects size and shape. In this work, all

of our objects (swimmers) are similarly sized and shaped,

and thus, we do not use anchor boxes.

2.2 Multi-object tracking

Most state-of-the-art multi-object tracking algorithms use

the tracking-by-detection approach. In this approach,

object bounding boxes are detected first, and then, the

tracking algorithm associates the detections across time to

create trajectories.

Most tracking-by-detection approaches score how sim-

ilar two detections are between adjacent frames. Then, an

assignment algorithm (such as the Hungarian algorithm

[22]) is used to associate pairs of bounding boxes (one

from each frame). The similarity score can be based on the

location information [35, 42, 55], motion information

[24, 26, 42], and appearance features [42, 50, 57]. Recent

methods [42, 57] have used RNNs to determine the simi-

larity score by using the appearance and movement history

of each trajectory to associate it with a bounding box in the

next frame.

A popular simple and fast tracking-by-detection multi-

object tracking algorithm is the Simple Online and Real-

time Tracking (SORT) [4] algorithm. SORT works by

assigning a distance value between detections in neigh-

bouring frames. It uses predicted object motion instead of

appearance features to compute the distance measure. This

distance value is then used by the Hungarian algorithm to

associate the next detection to an existing track. Deep

SORT [51] improved upon SORT by using CNNs to

extract appearance features which are then used to compute

the distance measure for association.

In contrast to these existing works we track the head

locations of swimmers instead of bounding boxes of

objects. The zoomed out view of the single camera cov-

ering the entire pool means the size of each swimmer’s

head is very small and similar in appearance, thus severely

limiting the usefulness of appearance features for associa-

tion. Hence, our tracking algorithm does not use appear-

ance features but instead just uses the distance between

head detections in adjacent frames as the similarity metric.

Inspired by the simplicity and fast processing speed of the

Simple Online and Realtime Tracking (SORT) [4], we

extended it to create the hierarchical SORT tracking

algorithm, which differs from the simple SORT [4] track-

ing algorithm in a number of ways as described in Sect.

3.3.1.

2.3 Temporal action localisation for untrimmed
video

Temporal action localisation takes untrimmed video and

predicts when actions occur and also classifies them.

Existing methods can be divided into two-stage and one-

stage approaches. Our problem of detecting the start of a

Neural Computing and Applications

123

swimming stroke is an example of the temporal action

localisation problem.

In two-stage approaches class agnostic action proposals

are generated and then classified separately. Some work

focuses on the proposal generation stage [6, 13, 28, 44],

while others focus on the classification stage [8, 53, 56].

Shou et al. [44] proposed segment CNN (S-CNN), which

make predictions at the temporal segment grain which they

later extended [43] to make fine grained (per frame) pre-

dictions instead. Cao et al. [7] adapt the ideas of anchors

from Faster R-CNN to solve the temporal action localisa-

tion problem.

One-stage approaches integrate proposal and classifica-

tion into a single step. These models typically extract per

frame features which are then fed into a 1D CNNs [27] or

RNNs [5] to make localisation and classification predic-

tions together. In contrast, the method proposed by Huang

et al. [20] solves the localisation and classification tasks in

two separate branches of the model.

Nibali et al. [32] performed temporal action localisation

using a 3D CNN model to find the start, middle and end of

dives and then used two more 3D CNNs to separately

detect the location of the diver and classify each dive.

The above works either do not do any tracking or just

track one person at a time [32]. In contrast, we need to

track and detect actions for multiple people simultane-

ously. Hence, we need to associate detections across time

in order to produce tracks, whereas the other works do not.

2.4 Computer vision for swimming analysis

There are a number of papers focused on estimating the

pose keypoints of swimmers [10, 54] and also classification

of swimming poses [12]. In contrast, we are interested in

detecting the start of a stroke instead of swimmer pose.

Our earlier work [49] was focused on just detecting the

beginning of swimming strokes from a zoomed in panning

camera focused on a single swimmer. The problem of this

paper is much more challenging for two main reasons.

First, we require detection and tracking because of the

zoomed out video of the entire pool. Second, to derive

meaningful analytical metrics in real-world coordinates we

must project the swimmers position from image space into

3D pool space.

Tsumita el al. [47] study the problem of estimating each

swimmer’s position using a single video of the entire pool

as input. They use adaptive background modelling to help

extract swimmer regions. Then, they estimate the location

of a swimmer as the centre of a Gaussian distribution of the

swimmer region. In contrast, we use deep neural networks

to detect the location of swimmers.

Like our work, Hakozaki et al. [16] first performs

swimmer detection on zoomed out footage of the entire

swimming pool and also detects the beginning of strokes.

They locate the swimmers using background subtraction

and iteratively update the swimmer’s position with a Kal-

man filter. Next they detect the start of strokes using an

LSTM. In contrast to their work we use a multitask deep

neural network to detect the swimmer’s heads and the

beginning of their stroke simultaneously. They do not

measure tracking accuracy and use only freestyle videos. In

contrast, we measure tracking accuracy and consider all

four swimming styles.

3 DeepDASH

In this section we present how DeepDASH performs its

four tasks: detecting swimmer head locations; detecting the

start frame of swim strokes; tracking swimmers for the

duration of the race; and mapping swimmer head locations

from 2D images space to 3D pool space. We will begin by

describing how DeepDASH uses a two-phased approach

with multitask learning to simultaneously detect swimmer

head locations and the start of strokes, and then proceed to

describe the tracking and coordinate space mapping

afterwards.

Figure 2 shows the two phase architecture used by

DeepDASH for swimmer detection. DeepDASH takes

multiple input frames and passes the data through two

phases of processing to predict the stroke start probabilities

and head coordinates for all swimmers in the middle input

frame. In the first (region proposal generation) phase, a

convolutional neural network (CNN) is used to output a

confidence heatmap of the estimated swimmer location. A

confidence threshold is applied to the heatmap in order to

determine midpoint locations for cropping sub-images

containing swimmer heads. In the second (refinement)

phase, the crops resulting from the first phase are fed into a

CNN body that is connected to two separate CNN heads.

The first CNN head outputs the probability of the crop

containing a swimmer executing the start of a stroke. The

second CNN head outputs a refined location of the swim-

mer’s head in each cropped image.

We run a tracking algorithm on the head locations

generated from the refinement phase to produce tracks of

swimmers. We then project the coordinates of the associ-

ated head positions from 2D image space into 3D pool

space in order to give an estimate of the swimmer’s

velocity along the x-axis (how quickly the swimmer travels

along the length of the pool). Swimmers executing

breaststroke and butterfly have a large amount of vertical

movement. Ignoring vertical motion for these styles can

greatly impact the accuracy of the projected x-axis posi-

tions. We demonstrate this problem in Sect. 3.5 and specify

Neural Computing and Applications

123

how we solve the problem by mapping coordinates from

2D image space to 3D pool space.

3.1 Region proposal generation phase

The region proposal generation phase of our approach is

analogous to the region proposal stage commonly found in

two-stage object detectors, but differs in two key ways: the

input is multiple 1080p resolution video frames instead of

one frame, and our system outputs pointwise coordinate

predictions instead of bounding box predictions.

Multiple input frames The output of our entire system is the

stroke probability and head position for each swimmer for

a single frame. However, we take as input n frames centred

around the frame of interest. This is because a single video

frame often does not contain enough visual information to

accurately predict a swimmer’s location and stroke prob-

ability. This is due to environmental effects such as sub-

mersion and splashing. Furthermore, predicting stroke

probability for symmetrical strokes such as breaststroke

depends on detecting the peak of the swimmer’s vertical

elevation, which would otherwise have a high degree of

ambiguity using single-frame input.

We use early fusion to combine the information from

the n input frames by feeding multiple frames as separate

input channels to a 2D CNN. Therefore, each input

example has shape ½n � d; h;w�, where n is the number of

fused frames, d ¼ 3 is the number of channels for each

video frame, and h and w are the frames’ height and width,

respectively. In our experiments we found that setting n ¼
5 gave a good balance between computational expense and

accuracy. We use every third frame at 25fps and maintain

the time between frames for other frame rates.

Our previous work [49] showed that early fusion gave

good performance for encoding temporal video informa-

tion without the need to use more complex architectures

such as 3D CNNs. By stacking video frames depth-wise,

the model is able to combine visual features from a

neighbourhood of frames and leverage implicit temporal

video consistencies.

Pointwise coordinate predictions. To derive velocity, some

specific part of the body must be consistently tracked, and

thus, we ultimately predict a single (x; y) coordinate pair

for each swimmer’s head. This contrasts with generic

object detectors such as Fast/Faster R-CNN [14, 40],

YOLO9000 [39] and SSD [31] which typically predict

bounding boxes for objects of interest. Bounding boxes

around the whole swimmer are not viable as the extension

of a swimmer’s arm would result in the reshaping of their

bounding box, artificially changing their position and

Table 1 Fully convolutional CNN architecture used for the region

proposal generation phase

Block Layers

1 3 � 3 conv, 16 output channels

3 � 3 max pool, 2 stride

4 groups of groupnorm

Relu activation

2 3 � 3 conv, 16 output channels

3 � 3 max pool, 2 stride

4 groups of groupnorm

Relu activation

3 3 � 3 conv, 32 output channels

3 � 3 max pool, 2 stride

8 groups of groupnorm

Relu activation

4 3 � 3 conv, 32 output channels

3 � 3 max pool, 2 stride

8 groups of groupnorm

5 3 � 3 conv, 1 output channel

Sigmoid activation

All convolutions had 3 � 3 kernels, a stride of 1 and padding of 1. All

max pooling layers had a padding of 1. The input to the model is

½n � d; h ¼ 1080;w ¼ 1920�, where n ¼ 5 is the number of fused

frames and d ¼ 3 is the number of channels (R, G, B)

Fig. 2 Diagram showing the architecture of DeepDASH for detecting head location and detecting the start of swimming strokes. The detailed

model specifications for the region proposal generation phase and refinement phase are presented in Tables 1 and 2, respectively

Neural Computing and Applications

123

subsequently their velocity. However, we can use generic

object detectors to derive velocity information if we place a

bounding box centred on a swimmer’s head and use the

centre of the predicted bounding boxes for evaluation.

We took a pre-trained Faster R-CNN model and fine-

tuned it on our dataset, but found that it did not perform

well. Small objects are known to be difficult for generic

object detectors [31], and by the standards of VOC2012

[11], all of our swimmers are very small (frequently \60

pixels high at 4k resolution). Additionally, these generic

object detectors [14, 31, 40] operate only a single frame at

a time. Thus, we create our architecture to be specific to

our task and use early fusion to utilise the motion infor-

mation as in [49]. In Sect. 5, we show that our architecture

performs significantly better than Faster R-CNN on our

task.

3.1.1 Heatmap prediction

Due to the translationally equivariant nature of convolu-

tional neural networks, it is not immediately obvious how

to output swimmer locations as numerical coordinates.

Owing to the varying number of swimmers detected in the

region proposal generation phase, we first produce a heat-

map of swimmer detection likelihoods to indicate coarse

regions of interest, thus allowing the use of a separate

coordinate regression model to predict a single swimmer

location per region.

Table 1 contains a precise description of the CNN

architecture used in the region proposal generation phase.

Each sample xi—consisting of five early-fused video

frames—is fed into a fully-convolutional network, pro-

ducing a single-channel feature map, to which the sigmoid

activation function is applied. The resulting output is a

heatmap, Ĥg, which is interpreted as a two-dimensional

grid of swimmer detection likelihoods. Each block in this

network consists of a 2D convolution, max-pool with a

stride of 2, group normalisation, and ReLU activation

function. The number of blocks is determined such that the

inputs have been spatially downsampled by a factor of 16

at the end. The dimensions of the output heatmap Ĥg are

therefore [1, h/16, w/16], where h and w are the height and

width of the original image in pixels.

It was decided that our model must be usable on a single

modern GPU and run in real time. Our input data are HD

images (1920 � 1080) which are very large images for

deep learning models. As the deep learning model, and

especially the region proposal generation, is the most

computationally expensive part of our system, we delib-

erately constrained our region proposal architecture to a

very small network. We chose to use the minimum number

of layers needed to downsample by a factor of 16. Each

point in the heatmap is a potential crop position, and thus,

each point in the heatmap can only ever result in a single

prediction. A downsampling factor of 16 is the largest

power of 2 which is still small enough that there is almost

no chance of two heads appearing in the same region.

Following standard practice, when we downsample, we

increase the number of features of the next convolution

Table 2 Fully convolutional CNN architecture used for the refinement phase

Body Coordinates head Stroke detection head

3 � 3 conv, 16 out ch 3 � 3 conv, 128 out ch, 16 dilation 3 � 3 conv, 128 out ch, 16 dilation

Groupnorm Groupnorm Groupnorm

Relu activation Relu activation Relu activation

3 � 3 conv, 32 out ch, 2 dilation 3 � 3 conv, 256 out ch 3 � 3 conv, 256 out ch, 2 stride

Groupnorm Groupnorm Groupnorm

Relu activation Relu activation Relu activation

3 � 3 conv, 64 out ch, 4 dilation 3 � 3 conv, 1 out ch 3 � 3 conv, 1 out ch, 2 stride

Groupnorm Groupnorm Spatial global max pool

Relu activation Relu activation Sigmoid

3 � 3 conv, 128 out ch, 8 dilation soft-argmax

Groupnorm

Relu activation

All convolutions have a stride of 1 and a padding matching their dilation rate (e.g. 4 pad for 4 dilation). All groupnorms used groups equal to the

number of channels divided by 4. The smallest number of groups is lower bounded by 1. A shared body feeds into two separate heads to perform

the multitask learning of stroke detection and swimmer head coordinates regression. The input to the refinement phase is ½n � d;H ¼ 48;W ¼ 80�
crops of the original 1080p input image centred around the head of the swimmer, where n ¼ 5 is the number of fused frames and d ¼ 3 is the

number of channels (R, G, B)

Neural Computing and Applications

123

layer. We empirically determined that group normalisation

[52] was marginally better than batch normalisation [21].

Targets We build a two-dimensional target heatmap Hg per

example yc, by rendering circular 2D-Gaussian centred on

each of the ground truth coordinates Nðyci ; 0:425Þ and

taking the max per pixel. The use of a Gaussian-shaped soft

target for representing ground truth locations is well-

established in the existing keypoint detection literature

[46].

It is important to note that the values in the target

heatmap are heavily skewed with a high percentage of zero

values (typically less than 0.5% of the output is nonzero). If

we employ a standard mean- square error loss to train a

model to output the heatmap, it would result in the model

outputting zero values for all locations. A common way to

address class imbalance is to adopt a weighted loss. Hence,

we employ the following weighted mean squared error

loss:

L1ðĤg;HgÞ ¼
�
Hg � ðc� 1Þ þ 1

��
Hg � Ĥg

�2 ð1Þ

where c is a scalar hyper-parameter which determines the

weighting coefficient applied to positive cells relative to

negative cells. This value can be increased to favour recall

over precision, with too low a value resulting in the model

converging to an all-zero heatmap. In our experiments we

found c ¼ 12 gave the best trade-off between precision and

recall.

3.1.2 Extracting crop coordinates

The aforementioned network produces a heatmap Ĥg per

example (represented as a depth-1 feature map with indi-

vidual elements in the range [0, 1]). To convert this map

into an arbitrary length list pi of (x, y) predictions, we list

all coordinates within Ĥg that have values above 0.2

(empirically determined to yield best results).

For each of these predicted points, a crop is taken from

the early-fused input frames which corresponds to a 3 � 5

region in the heatmap, centred on the predicted point. Due

to the downsample factor of 16, each cropped image is of

shape ½n � d;H ¼ 48;W ¼ 80�.

3.1.3 Crop proposal refinement

Non-maximum suppression As a single swimmer head may

appear in more than one cell, simple confidence thresh-

olding often results in positive predictions in multiple

adjacent cells for the same swimmer. To mitigate this, the

heatmap has a form of non-maximum suppression applied.

A window with the same spatial dimensions as the desired

crop is slid over the heatmap, where the centre value is

zeroed out if there exists a higher confidence cell within the

window.

An example failure case for this is when a swimmer’s

foot is incorrectly identified as the head because it is far

enough away. Other types of erroneous detections like this

are typically removed during tracking (see Sect. 3.3).

Jittering During training the ground truth swimmer crop

coordinates are known, resulting in the ability to create

perfectly centred crops. If each crop that is fed into the

refinement phase is centred perfectly on a swimmer’s head,

then the refinement phase will just learn to always return

the centre coordinate of each crop as the head location.

This would render the regression portion of the refinement

phase redundant. At inference time we do not know the

precise ground truth coordinates of each head, and hence,

we will not be able to centre the crops perfectly on the

head. Therefore to mimic the conditions during inference,

we jitter the location of the crops during training by ran-

domly translating the crop coordinates by up to 90% of the

size of the window in both directions, effectively moving

the swimmer’s head randomly within the crop with each

training example.

3.2 Refinement phase

While the region proposal generation phase was concerned

with quickly determining the approximate positions within

the whole image, the refinement phase is concerned with

determining the precise locations and actions of the

swimmers. The refinement phase takes small crops

(½n � d;H ¼ 48;W ¼ 80�) of the original images and pro-

duces high-detail head location heatmaps for individual

swimmers, Ĥc. The smaller crops allow us to use more

convolutional layers than the region proposal generation

phase while still maintaining real-time inference speed. As

in the region proposal generation phase, we use early

fusion to combine crops from a window of frames, using

the same crop location on each frame in that window.

Unlike the region proposal model, we use dilated convo-

lutions in the refinement phase, with an increasing dilation

factor through the network (see Table 2) to allow each

neuron to have a larger receptive field.

The region of interest heads in Fast/Faster R-CNN take

as input image features after running a whole CNN on the

input image. In contrast, our refinement phase takes as

input crops of the original image. All R-CNN variants use

hundreds or even thousands of region proposals per image

with a lot of overlap. This overlap means that they get a

large speed improvement by running the initial convolution

layers on the whole image once and performing the region

of interest pooling (RoI) on those features. We found that

using the first phase features in addition to the input images

Neural Computing and Applications

123

as input to the refinement phase produced a lower F1 score

(see Sect. 5.1). And for our task, we found that we could

produce a precise set of high-quality region proposals with

only a few convolution layers. These regions cover a very

small proportion of the image (\1%) and do not overlap

often, so we would not get any significant speed

improvement from using the first phase features, either.

Multitask learning is used to output both the swimmer

location and the action probabilities. This is implemented

with a shared body of convolution operations and separate

heads for each predicted property (see Table 2 for detailed

model specifications). Here we only predict swimmer

location and strokes, but it would be trivial to introduce

more heads for predicting additional actions (e.g. breaths).

By sharing several layers of computation between these

tasks we increase the speed of the refinement phase. We

believe that there is sufficient representational overlap

between the tasks (e.g. both need to separate the swimmer

from the background) that the accuracy would increase too.

3.2.1 Swimmer coordinates

We considered three ways to translate the resultant heat-

maps of the swimmer head location into coordinates: a

fully connected layer; argmax; and soft-argmax [33]. For

DeepDASH we opted to use soft-argmax as it has several

desirable properties for precise location prediction. Soft-

argmax works by using a softmax to convert the heatmap

into a 2D probability distribution, then finding the expected

location within the domain [�1, 1] for both dimensions

(x and y) to produce differentiable normalised sub-pixel

coordinates. Soft-argmax is translationally equivariant but

a fully connected layer is not.1 Where argmax effectively

quantises predicted coordinates to whole pixel values

(corresponding to several centimetres in real-world coor-

dinates), soft-argmax allows regression to arbitrary preci-

sion. This is especially important in our case since the

ground truth annotations are at a higher resolution (4K)

than the input to the model (1080p). Hence, soft-argmax

has the potential to output coordinates at the 4K pixel grain

whereas argmax can only output at the 1080p pixel grain.

The primary coordinate loss (Lc) is simply MSE

between the predicted coordinates and the target

coordinates:

Lc Ĥc; yc
� �

¼ MSE softargmax Ĥc

� �
; yc

� �
ð2Þ

where Ĥc are the coordinate heatmaps produced by the

model and yc are the true coordinates.

Training with soft-argmax and only using the primary

coordinate loss is under-constrained since there are many

different heatmaps that can result in the same numerical

coordinate predictions. Nibali et al. [33] found that a sec-

ondary heatmap loss that compares the predicted heatmap

to an idealised heatmap with a Gaussian target centred on

the ground truth location produces more reliable predic-

tions. Thus, we also use a secondary heatmap matching

loss (Lh) calculated using Jensen–Shannon divergence

(JSD):

Lh Ĥc; yc
� �

¼ JSD Ĥc;N yc; rð Þ
� �

ð3Þ

The standard deviation of the target Gaussian, r, was set to

0.85 in our experiments based on findings of a hype-pa-

rameter search (see Sect. 5.5). This value creates Gaussian

blobs approximately the size of a head in the average case.

3.2.2 Stroke probabilities

For predicting swimmer stroke actions, we follow our

earlier work [49]. In our earlier work we found that the

stroke detection model is able to achieve much higher

accuracy when the problem is changed to a regression

problem where the target label is softened using a truncated

sinusoid with its peak aligned with the start of a stroke,

instead of just performing binary classification (where

target is 1 at the start of the stroke and 0 everywhere else).

The rationale for this is that the ‘‘start of stroke’’ frame is

very similar in appearance to neighbouring frames, and

therefore, it would hinder the optimisation procedure to

penalise the model for producing a high stroke probability

on these neighbouring frames. The softened targets, G(n),

are defined as follows:

G nð Þ ¼ cos
ln � nj j
2zþ 1

p

� �
if ln � nj j\z

0 otherwise

8
<

:
ð4Þ

where n is the frame number, ln is the frame number of the

nearest labelled event and z controls the spread of the soft

targets. In our experiments we use z ¼ 5, which means that

the extent of nonzero labels surrounding each action event

is 11 frames wide.

Let ys ¼ fGðnÞjn 2 Fg be the set of transformed target

probabilities for the set of all video clip frames F used for

training. The loss (Ls) between the predicted probability ŷs
and the transformed target probability ys is computed by

the equation below:

Ls ŷs; ysð Þ ¼ MSE ŷs; ysð Þ ð5Þ

In our earlier work we found training a single model to

predict strokes for all swimming styles worked just as well

as training a separate model for each swimming style
1 The convolution layers preceding this operation are not completely

translationally equivariant due to image boundary effects, but a fully

connected layer only exacerbates this problem.

Neural Computing and Applications

123

individually. Hence, we take that same approach in this

paper.

3.2.3 Combined loss

The loss for the refinement phase is the sum of the previ-

ously mentioned losses, multiplied by a coefficient k ¼ 0:2

to balance it with the proposal generation phase’s loss.

That is,

L2 Ĥc; ŷs; yc; ys
� �

¼ Lc Ĥc; yc
� �

þLh Ĥc; yc
� �

þLs ŷs; ysð Þ
ð6Þ

L Ĥg; Ĥc; ŷs; yc; ys
� �

¼ L1 Ĥg; yc
� �

þ kL2 Ĥc; ŷs; yc; ys
� � ð7Þ

where L1, Lc, Lh, Ls are defined as in Eqs. 1, 2, 3, and

5, respectively.

3.3 Tracking

Once per-frame swimmer detections have been obtained, a

tracking algorithm is required to track individual swimmers

through time. These tracks are required to associate strokes

with swimmers and to derive analytical metrics (e.g.

average velocity). The accuracy of tracking algorithms are

greatly affected by the accuracy of the detections used, and

many complex tracking algorithms are designed to cope

with more noisy detections. Our detections were found to

be quite accurate, and hence, a simple tracking algorithm

like SORT [4] is sufficient for achieving high accuracy.

However, we found that SORT has a tendency to produce

short, fragmented tracks, which can be improved with an

additional hierarchical joining procedure. We call this

tracking approach hierarchical SORT (HISORT), which

will be explained in detail in Sect. 3.3.1.

Tracking can be used to improve the detection results.

Once detections have been associated with a continuous

identity, it is trivial to filter out points that do not belong to

any swimmer and to interpolate missed detections. Track-

ing improves recall using interpolation to fill in missing

detections and improves precision by removing erroneous

detections. However, tracking can also reduce recall by

removing isolated but correct detections. We found in the

experiments that overall tracking is able to improve the F1

score.

Our tracking algorithm outputs a set of tracks for a video

v, which we define as a set of points with associated frame

numbers,

Tv
k ¼ ðfj; pjÞjf 2 fstart; fend½ �; p 2 R3

� �
ð8Þ

where p is a triple of ðx; y; stroke probÞ and fstart and fend

are the beginning and end frames of a given video.

3.3.1 Hierarchical SORT (HISORT)

As mentioned earlier, our HISORT is based on the SORT

tracking algorithm. The original implementation of SORT

uses bounding boxes to represent objects, which is a

common property among existing object tracking algo-

rithms. In contrast our work considers each object (swim-

mer’s head) to be a single point. Therefore, we used

Euclidean distance instead of intersection over union (IoU)

when computing the distance between two objects used for

association. SORT estimates object movement using a

constant velocity assumption across frames. It then com-

putes the distance between the estimated object’s bounding

box with all detected objects in the next frame. This is then

fed into the Hungarian algorithm to find the optimal overall

association among all pairs of detections between the

adjacent frames. The constant velocity assumption of

SORT is not an especially good fit for swimmer motion due

to the high prevalence of nonlinear movement in swim-

ming styles such as breaststroke and butterfly. Since the

movement of swimmers between frames is relatively small,

we opted to make a zero velocity assumption instead and

found that to work well. Following similar reasoning, using

a linear Kalman filter for estimation was not found to

improve tracking results (and hence we do not take this

approach either).

Algorithm 1: Algorithm used to finding ini-
tial set of tracks based the SORT algorithm.
Input: p ← predicted points grouped by frame,

md ← maximum distance threshold,
mf ← maximum frames without detection

Output: set of tracks

1 O ← {} // open tracks;
2 C ← {} // closed tracks;
3 foreach pi ∈ p do
4 pi ← predicted points on frame i;
5 e ← estimated next points from O;
6 find a distance matrix D which holds the

distance between every pi,j and ek;
7 associate points to tracks using the Hungarian

algorithm on D;
8 add associated points to tracks in O;
9 move old tracks from O to C;

10 create new tracks from points in pi that weren’t
already accounted for and add to O;

11 end

Algorithm 1 shows the algorithm we used to find the

initial set of tracks based on the SORT algorithm. The

algorithm uses two hyper-parameters: the maximum

threshold for joining tracks to points md and the maximum

Neural Computing and Applications

123

number of frames without an associated detection mf

before a track is closed. These values can be considered as

measures of how much risk you are willing to take when

associating a track to a point. As these values decrease, the

risk of including an erroneous detection in an otherwise

correct track decreases, but this also results in shorter

tracks since we are taking less risk. We could not find any

setting for these values which reliably created long tracks

without also losing track of the swimmer. Hence, we

developed the HISORT algorithm which hierarchically

joins tracks to create longer tracks with each iteration.

With a single pass of SORT using conservative values

for md and mf , we can create many shorter, high-confi-

dence tracks. The fastest recorded average speed for a

swimmer in a race was \2:5 m/s. A swimmer may exhibit

faster burst motion over short distances (between frames),

so we choose the maximum distance threshold for joining

points to tracks to be equivalent to 3 m/s for the first

iteration.

Next we iteratively join these higher confidence tracks

to create longer tracks. To do this we consider the first and

last point in every track as a potential position to join

another track to. Then this sub-problem is almost the same

concept that we started with: we need an algorithm to

associate points. Thus in the second pass, the input to

SORT is a list of points on different frames and the output

is a set of tracks; we call the tracks made from the original

detections first-order tracks, and we select md and mf such

that we have high confidence in these tracks. By selecting

the first and last point from each track, we can create

another list of points on different frames. We then put these

points into Algorithm 1 again to get another set of tracks;

we call these second-order tracks. These second-order

tracks are interpreted as a set of joins between our original

tracks. Since SORT does not implicitly constrain second-

order tracks to be valid joins, we must explicitly filter these

tracks. That is, we only keep second-order tracks that are of

length 2 and would join a first-order track’s end to a dif-

ferent first-order track’s beginning. We can repeat this

process and for each iteration, we can relax the constraints

on joining points to tracks and increase our threshold on

minimum track length to get rid of erroneous tracks. Fig-

ure 3 shows an illustration of how this iteration works.

Tracking performance is quite sensitive to the choice of

md, and thus, it is important to choose a reasonable value.

We translate all detections to world space using the method

described in Sect. 3.5, assuming z ¼ 0. This allows us to

use physical intuition to select a reasonable md. This also

normalises distances in image space across different cam-

era perspectives.

3.3.2 Post-processing of tracks

For practical reasons we apply the following post-pro-

cessing steps after running HISORT to produce final tracks

that are more useful for coaches:

1. Linearly interpolate track coordinates such that there

are no missing predictions for any of the frames it

spans.

2. Apply a Butterworth filter to independently smooth

x and y coordinates. We used a sample frequency of

25 Hz and cut-off frequency of 4 Hz.

3. Remove tracks that do not have a large enough extent

in the x-axis (2.5 m). This rule rejects swimmers from

the previous race hanging on the lane ropes, and some

of the people standing beside the pool during the race.

3.4 Stroke detection

We perform stroke detection after the head tracking is

completed. To perform stroke detection we take the stroke

probabilities in the resulting tracks and do some post-pro-

cessing to identify the frame number for the start of each

stroke. We take the same approach as our previous work

[49], which is specified as follows:

1. Smooth the signal produced by the model by convolv-

ing a Gaussian kernel (width of 5 and r of 1).

(a) (b) (c) (d)

Fig. 3 Illustrative example of how HISORT works a The majority of

our detections are quite close to the ground truth, but it is still not

trivial to join them into entire tracks. The smaller blue dots are

detections and the faint green lines are the ground truth. b We start by

running Algorithm 1 to get some likely tracks (blue lines). Sometimes

small tracks appear not on any swimmers. c We iterate by running

Algorithm 1 on the beginnings and ends of likely tracks (larger yellow

dots) with relaxed constraints on joining to get second-order tracks

(yellow lines). d Once we have used the second-order tracks to join

the first-order tracks from the first iteration, short tracks are removed.

We can iterate multiple times to cover remaining gaps (colour

figure online)

Neural Computing and Applications

123

2. Take the middle frame of any consecutive set of frames

predicted with probability over 0.5 to be a discrete

prediction of a stroke.

We know that the strokes are roughly periodic for swim-

ming, so we use some simple rule-based operations to edit

(add and delete) the strokes produced using the above steps

to produce more accurate predictions. The rules are as

follows:

1. If the frame gap (number of frames between successive

stroke detections) is less than half the median frame

gap for the section, remove the later stroke.

2. If the frame gap is more than 1.55� (and less than 6�)

of the median frame gap for the section, add strokes

equidistant between the detected strokes.

A track may include longer periods where there are no

strokes (dive in, turns, etc.), so we only apply the above

rules for a section of a track with several detections not

more than 3 times the median frame gap (for the track)

away from each other.

3.5 Mapping from image to pool space

In order to derive useful metrics with real-world units for

swimming race analysis, it is necessary to map swimmer

detections from image space into pool space. Pool space is

defined relative to the surface of the pool, as in Fig. 1: the

x-axis runs along the length of the pool (parallel to the lane

ropes), the y-axis runs along the width of the pool (per-

pendicular to the lane ropes), and the z-axis runs normal to

the surface of the pool (perpendicular to the other axes).

In general, a homogeneous point in pool space, x, is

related to its image in image space, x0, by the following

equation:

x0 ¼ KEx ð9Þ

where K and E are matrices encapsulating the intrinsic and

extrinsic parameters of the camera, respectively. We

calibrate the camera to obtain approximations of these

matrices. In our particular implementation we assume a

pinhole camera model with zero lens distortion.

Once we have computed K and E, projecting points from

pool space into image space is a simple matter of applying

Eq. 9. However, the inverse transformation is not so trivial

since back-projecting a point from 2D space produces a ray

in 3D space [58]. So in addition to back-projecting the 2D

location, we will also need to find the point along the ray

that corresponds to the pool-space location of the swimmer.

First, we use the pseudo-inverse of K to calculate x̂, the

direction of the ray in camera space which passes through

the camera origin and point x0 on the image plane.

x̂ ¼ Kþx0 ð10Þ

This ray can be transformed into pool space by using the

pseudo-inverse of E to transform both its origin, (0, 0, 0),

and direction, x̂, from camera space.

u ¼ Eþ0 ð11Þ

v ¼ Eþx̂ ð12Þ

The location of the swimmer, x, lies somewhere on this

ray. That is, x ¼ uþ cv, where c 2 Rþ.

In order to solve for c and obtain an unambiguous

location in 3D space, it is necessary to impose an additional

constraint. The choice of constraint is very important, as it

directly influences how the swimmer is positioned along

the length of the pool (Fig. 4), and hence affects key

analytical metrics such as swimmer velocity.

One might initially consider constraining swimmer

locations to be co-planar with the surface of the pool (ef-

fectively setting z ¼ 0 for all points, which is equivalent to

using a homography between the image plane and pool

surface plane). While this works well for swimming styles

with minimal vertical head movement, such as freestyle

and backstroke, other styles like butterfly and breaststroke

Fig. 4 Same image-space point projected onto the xy (red) and xz
(blue) planes. There is a pronounced difference in x-axis displacement

between the two inferred world-space coordinates x0 and x1 (colour

figure online)

Fig. 5 Two plots of breaststroke velocity obtained using different

constraints (xy-plane: constrained to pool surface, and xz-plane:

constrained to lane centre). The error caused by the xy-plane

constraint manifests as a systematic drift in velocity as the swimmer

moves along the camera’s field of view

Neural Computing and Applications

123

suffer from inaccuracies as the swimmer’s head rises and

falls (see Fig. 5).

We can develop a much better constraint by observing

that professional swimmers typically exhibit very little

periodic side-to-side (y-axis) motion during a race. So in

order to find the location of a swimmer in pool space, we

select the point of intersection between the back-projected

ray and the plane at y ¼ c, where c is the y-position of their

lane’s centre. Under this assumption, the value of c can be

calculated like so:

c ¼ uy þ cvy)c ¼ c� uy
vy

ð13Þ

The lane-centre constraint yields accurate positions along

the length of the pool for all stroke styles. Individual

swimmer tracks are associated with lanes by mapping all

points in the track to the pool’s surface (using the z ¼ 0

constraint) and associating the track with the lane in which

the majority of its points are contained.

Derived Metrics To gain insight into the data obtained,

we derive the swimmer velocity and stroke rate. To com-

pute the velocity v, we perform numerical differentiation

using the difference quotient formula at each time step:

vi ¼ dtþ1 � dt ð14Þ

where dt is the swimmer’s x-position at time step t. The

swimmer’s stroke rate is measured in ‘‘stroke cycles per

minute’’, where each stroke cycle is completed either every

two strokes for asymmetrical strokes (backstroke and

freestyle), or every one stroke for symmetrical strokes

(butterfly and breaststroke). This stroke rate r is computed

similarly to the velocity, using the following equation:

ri ¼ siþ1 � si ð15Þ

where si is the time at which stroke i occurred.

4 Experimental setup

We used the Adam optimiser with learning rate g ¼ 10�4

for 500k training steps with a batch size of 1 window of

frames during training for all experiments. We trained

models (individually; not distributed) on Nvidia Titan X

and RTX 2080 ti GPUs. Depending on the hardware con-

figuration, this took between 3 and 6 days to train each

model. We used the Pytorch [34] deep learning framework

to implement and train our CNN models.

4.1 Dataset

We used a dataset consisting of 249 videos from nine

different venues (see Table 3), of which seven venues were

selected for training. The training venues were manually

selected to have best variation in environmental conditions

such as time of day and indoor/outdoor pool.

Table 3 This table shows the distribution of annotated frames across

the different stroke types

Total Train Validation Test

Venues 9 7 1 1

Frames All 327,003 263,647 39,330 24,026

Backstroke 70,355 52,534 13,616 4205

Breaststroke 57,960 43,209 5546 9205

Butterfly 61,595 47,518 9750 4327

Freestyle 117,065 100,358 10,418 6289

Medley 20,028 20,028 0 0

The train, validation and test splits each have a distinct set of venues.

As we can see there is substantially more freestyle frames than other

stroke types. This is because in every competition there is more

freestyle events than others

(a) (b)

Fig. 6 Two example frames from our dataset. Notice the camera angles are quite different for the two different races in different venues. Also

note the lighting variations and the variations in the glare off the water surface between the two venues

Neural Computing and Applications

123

Figure 6 shows two example frames from our dataset.

Notice the difference in camera angle and number of

swimmers for the two races. We annotated every swimmer

for every frame of the video. The videos in our dataset had

a frame rate of 25 fps.

The dataset included all four swimming stroke styles

(breaststroke, butterfly, freestyle, and backstroke). When

stratifying by swimming style, we ensured that our

train/validation/test splits were preserved. Further, we

ensured that the validation and test sets each contain foo-

tage from venues not present in the training set, as we

believe this to be a compelling test of generalisation to new

camera angles and colour variations.

The data are 4K videos taken from a fixed camera at a

relatively high position at various swimming competitions

over the past few years. Due to memory constraints we first

downsampled the video to 1080p versions before per-

forming any processing.

4.2 Training

During training, examples are randomly drawn from the

video recordings in our training dataset such that each

annotated window of frames has an equal probability of

selection.

Although our dataset contains video footage from a

limited number of distinct venues, we observe that lighting

conditions vary considerably across different venues. In

order to help our model generalise to new venues, we

perform significant uniform random colour augmentation

on the original images before both phases during training.

We use a contrast factor (�0:8; 0:8½ �), global additive

brightness (�40
255

; 40
255

� 	
), additive brightness per colour

channel (�20
255

; 20
255

� 	
), random noise per pixel (�0:02; 0:02½ �),

and random horizontal flips to randomly transform each

training example in an online fashion.

During training, the input is cropped using the ground

truth coordinates to provide input for the refinement phase.

These crops are taken such that the head location is ran-

domly placed within the central 90% region of the crop

along each axis. This process, which we refer to as ‘‘jit-

tering’’, ensures that the second phase is robust to varia-

tions of head location within the crop.

The significant difference in scale of the swimmers’

height in the image means that any crop size chosen will

occasionally have multiple swimmers in view (for the

distant lanes).

The two phases were trained simultaneously, each batch

of examples representing a single training step for both

phases. Training for 500K iterations takes 90 h on a GTX

1080.

4.3 Evaluation metrics

We use the F1 score to evaluate both head detection and

stroke detection. The definitions used are as follows:

Recall ¼ R ¼ TP

TP þ FN
ð16Þ

Precision ¼ P ¼ TP

TP þ FP
ð17Þ

F1Score ¼ F1 ¼ 2TP

2TP þ FP þ FN
ð18Þ

Head detection. For head detection our target data consist

of one head per lane per frame of the video. We calculate

F1 on the subset of predictions which are in the same lane

and same frame for each target. We consider only the

distance in the x dimension since the coaches are only

interested in the velocity of swimmers along the lane. The

track identities are used only to ascribe each point to a lane,

and a positive match is determined by any prediction being

within 15cm of each ground truth. That is the TP (True

Positive), FN (False Negative), and FP (False Positive)

values are all calculated truth-to-prediction. We call this

metric lanewise, framewise, and pointwise F1 (LFPF1).

Stroke detection. For stroke detection, we evaluate each

predicted track separately, and only compare against

ground truth stroke predictions that exist in the same lane

and time as the predicted track. A positive match is

determined by any prediction on that track being within a

five-frame window of each ground truth stroke annotation.

Unlike in LFPF1, the ground truth stroke annotations may

account for more than one TP each, as there may be

multiple predicted tracks in each lane, and we did not want

to penalise the stroke detection metrics for a tracking error.

Tracking. When evaluating the tracking results we use the

MOT challenge [2] MATLAB evaluation script. We report

the two most prominently used metrics for tracking per-

formance: MOTA [3] and IDF1 [41].

The MOTA metric is the most widely used tracking

metric that incorporates the number of false positives, false

negatives, and ID switching. It is defined as follows:

MOTA ¼ 1 �
P

t FNt þ FPt þ IDSWtð Þ
P

t gt
ð19Þ

where IDSW measures the number of ID swaps between

tracks, i.e. the number of times the identity of the closest

ground truth track to a predicted point changes, summed

across predicted tracks.

The IDF1 metric describes how well identities are pre-

served on tracks. To calculate the IDF1 metric, first each

ground truth track is matched to a predicted track. Then, a

positive match is a point in the ground truth track which is

Neural Computing and Applications

123

within the distance threshold of the corresponding point in

the matched predicted track, and the matched predicted

track is the predicted track which maximises the IDF1

metric. We refer the reader to [41] for more details of this

process.

5 Experimental results

We performed experiments to verify the effectiveness of

DeepDASH on head/stroke detection and tracking sepa-

rately. For detection, we compared our model to Faster

R-CNN and performed an ablation study to investigate the

relative performance impact of various aspects of our

approach. For tracking, we performed a separate ablation

study to investigate the impact of hierarchical operations

and track post-processing. We additionally break down our

head detection results for our base model stratified by

stroke type and compare stroke detection results with/

without extra processing rules. All results reported in this

section are on the test set described in Table 3.

5.1 Head detection ablation and stratification
study

In this experiment we test the accuracy of our head

detection algorithm using the LFPF1 metric as defined in

Sect. 4.3.

Our head detection accuracy is measured after tracking

(including all extra processing rules). The tracking can

remove false positive detections and also interpolate

missing detections. We always know where the lane

boundaries are in image space (as a result of the camera

calibration), so we assign every track to the lane which the

majority of its points fall into (using the 2D space trans-

formation). Then, we only consider predicted points from

tracks in the same lane as the targets. We evaluate the head

detection on a frame-by-frame basis and do not consider

predictions for adjacent frames.

Table 4 shows the results of our ablation study. In the

ablation study, we start with the full algorithm labelled as

DeepDASH. Then, for each other row of the table we

remove one feature to gauge the impact of the absence of

the feature on the overall performance.

The results show the model performs much worse when

we remove the refinement phase, thus showing the

importance of this second phase. To remove the refinement

phase for our experiments, we apply soft-argmax on the

window of the region proposal generation phase that would

normally be used to indicate the crop position. By inves-

tigating the predictions qualitatively, we found that the

model without a refinement phase exhibited a strong bias

towards taking the centre point of the window as the

swimmer location, leading to poor evaluation performance.

Normally, during training we deliberately choose crops

such that the head appears randomly within the central 90%

of the crop. Restricting that random variation to only 10%

of the crop size drastically drops the model’s performance.

We observed that this setting causes the model to learn a

strong bias to predicting in the centre of the crop at test

time, regardless of where the swimmers head actually was.

This validates the importance of jittering a large proportion

of the crop size during training.

The results show using non-maximal suppression

(NMS) at the end of the region proposal generation phase

improves the results but by a smaller margin compared to

the inclusion of other features. The reason that NMS is not

as critical to our solution as typical object detection algo-

rithms is that the thresholding on the heatmaps in the

region proposal generation phase is quite effective at

removing false detections.

Lastly, when the refinement phase uses first phase fea-

tures (from the region proposal CNN) instead of cropping

the original 1080p image, the results are much worse. This

may be because disconnecting the two phases allows the

two separate CNNs to specialise more on their individual

tasks (proposal and refinement). The first phase has to

distinguish a swimmer from everything that can be in the

background, while the second phase only has to distinguish

the swimmer from the water and the lane ropes.

Table 5 shows the results of using DeepDASH to predict

swimmer head location across the different stroke styles.

The results show a single model trained on all four dif-

ferent stroke styles works well on each separate stroke

Table 4 Head detection ablation study results

LFPF1 (%) MOTA IDF1

DeepDash 93.0 66.9 74.1

No refinement phase 51.3 - 33.7 14.6

10% Jitter 69.7 - 43.3 19.9

No NMS 89.7 57.9 59.5

First phase features 86.0 61.2 65.3

The second to fifth rows shows the results when one feature was

removed from DeepDASH. The table shows both the effects of

removing these features on detection metric (LFPF1) and tracking

metrics (MOTA and IDF1)). ‘‘No Refinement Phase’’ refers to

directly using the output of the region proposal phase as the head

detections. ‘‘10% Jitter’’ refers to reducing the range of random head

location jitter from 90 to 10% of the crop size when training the

refinement phase. ‘‘No NMS’’ refers to turning off non-maximal

suppression at the end of the region proposal generation phase. ‘‘1st

Phase Features’’ refers to the refinement phase taking as input the

features from the regional proposal generation phase instead of crops

of the original 1080p image

Bold indicates the best result for each column

Neural Computing and Applications

123

style. The breaststroke model exhibits the worst perfor-

mance because of the large vertical movement of the

swimmer’s head.

5.2 Tracking algorithm results

Table 6 shows the results of the experiment that compares

our hierarchical SORT (HISORT) and the existing SORT

algorithm (incorporating the modifications described in

Sect. 3.3.1). SORT? and HISORT? are the SORT and

HISORT tracking algorithms with the post-processing rules

from Sect. 3.3.2 applied.

The results show that adjusting the swimmer head

detections using the output of tracking algorithms had a

negligible impact on the head detection metric LFPF1. This

implies our two-phased approach to swimmer head detec-

tions was already very accurate.

Our results show that HISORT performs similarly to

SORT for the MOTA tracking metric but significantly

outperforms SORT for the IDF1 metric. The reason that the

MOTA results are similar is due to the accurate object

detections which makes two of the three components of the

MOTA formula (false positive and false negative

detections) high for both tracking algorithms. IDF1, which

describes how well identities are preserved on tracks,

shows that HISORT is able to generate longer tracks by

preserving the identities of swimmers. Furthermore,

applying the extra post-processing rules described in Sect.

3.3.2 to HISORT (HISORT?) further improved the IDF1

results.

SORT? had a worse LFPF1/MOTA compared to

SORT. This is due to a worse head detection recall as a

result of the post-processing rules removing detections.

Figure 7 shows a qualitative example of tracks produced

by SORT? versus HISORT?. As we can see from the

figure, SORT? produced shorter tracks in the two lanes

where large sections of the lanes were not tracked. In

contrast, HISORT? successfully tracked almost the entire

track for all lanes except for a small gap in the top lane.

5.3 Comparing our head detection algorithm
to faster R-CNN

In order to compare the performance of our head detector

with an off-the-shelf object detector, we used the

Torchvision implementation of the popular Faster R-CNN

[40] object detection model. This model has a ResNet-50

backbone [19] which was pretrained on the COCO 2017

dataset [1].

The region proposal network is trained from scratch on

our swimming dataset. The rest of the network is fine-tuned

on our dataset. Faster R-CNN requires bounding boxes as

targets, so we translated our position targets to bounding

box targets that are the same size as the crop in the second

phase (48, 80) and centred on the positions. This means

that all predicted bounding boxes for the Faster R-CNN are

the same size. Faster R-CNN should quickly learn to only

Table 5 Results from using

DeepDASH to predict swimmer

head location across the

different stroke styles

Stroke style LFPF1 (%)

Backstroke 92.9

Breaststroke 89.8

Butterfly 94.0

Freestyle 96.6

Overall 93.0

A single model was trained for

all four strokes styles. The

results show how well that sin-

gle model performs for each of

the four different stroke styles

separately

Table 6 Tracking comparison

LFPF1 (%) MOTA IDF1

No tracking 92.5

SORT 92.6 66.4 60.5

SORT? 89.6 63.2 64.3

HISORT 92.8 66.7 72.6

HISORT? 93.0 66.9 74.1

LFPF1 measures the accuracy of the swimmer head detection, and

MOTA and IDF1 are tracking metrics used in the MOT challenge

[25]. See Sect. 4.3 for more detailed description of the metrics.

SORT? and HISORT? are the SORT and HISORT tracking algo-

rithms with the post-processing rules from Sect. 3.3.2 applied

Bold indicates the best result for each column

Fig. 7 This figure shows a qualitative comparison of SORT? (above)

and HISORT? (below). HISORT?’s hierarchical tracking allows for

the inclusion of short tracks, where SORT fails to do so

Neural Computing and Applications

123

output one bounding box size, and we can take the centre

point of the predicted bounding boxes as the predicted head

locations. We trained Faster R-CNN with two classes:

‘‘swimmer’’ and ‘‘background’’.

Table 7 shows the detection results of comparing

DeepDASH to Faster R-CNN. The results show that

DeepDASH achieves much higher LFPF1 score compared

to Faster R-CNN. We believe the discrepancy in perfor-

mance comes largely from Faster R-CNN being restricted

to operating on a single frame at a time, whereas Deep-

DASH is able to incorporate motion information by oper-

ating on a window of five frames. Furthermore, the

detection of small objects is a well-known weakness of all

general object detection algorithms including Faster

R-CNN, and therefore, the small appearance of swimmer

heads (especially in far lanes) is likely a contributing factor

to its poor performance. In contrast, DeepDASH with its

use of the heatmap in the region proposal generation phase

and the soft-argmax in the refinement phase is better able to

adapt to smaller objects.

These results also show that adding and deleting the

detections based on the tracking algorithm (HISORT?)

significantly improved the performance of Faster R-CNN

whereas it made a negligible difference to DeepDASH.

This can be explained by the fact that applying tracking to

Faster R-CNN predictions removed many of the false

positive detections (as evidenced by the observed increase

in precision). In contrast, DeepDASH already produced

very high precision detections with very few false positives

and consequently does not benefit much from the tracking.

Table 8 shows that our HISORT? tracking algorithm

performs significantly better when using DeepDASH’s

head detection algorithm rather than Faster R-CNN. This

result is due to the much higher head detection accuracy of

DeepDASH. (It is well known that the quality of tracking

by detection is very dependent on object detection

accuracy.)

Table 8 compares the inference speed of DeepDASH

and Faster R-CNN. The reason that Faster R-CNN is sig-

nificantly slower than DeepDASH is that Faster R-CNN

with a ResNet-50 backbone is significantly larger than

DeepDASH, and hence requires more computational time

to produce predictions. Faster R-CNN is larger because it

was designed as a general-purpose object detector, and

hence has a large number of weights to cater for a wide

variety of object sizes, shapes, and classes.

5.4 Stroke detection

In this section we present the accuracy of DeepDASH for

stroke detection. We only evaluate the accuracy of stroke

detection for predicted tracks. This is because in order to

detect the beginning of a stroke, we need a stroke proba-

bility signal that spans over a period of time. A stroke is

considered to be correctly detected if it is predicted within

a five-frame window within any ground truth label.

Table 9 shows the accuracy of DeepDASH at perform-

ing stroke detection using the F1 score as described in Sect.

4.3. The results are stratified across the different stroke

styles. The results show that DeepDASH performs very

accurate stroke detection for all the stroke styles. Butterfly

is worst performing due to the large amount of vertical

movement. The butterfly results are improved considerably

when the extra rule-based operations described in Sect. 3.4

are applied (Strokes?) to remove false detections and add

missing detections.

5.5 Effect of varying hyper-parameter values

In this section we show the effect on performance when

varying the two important hyper-parameters r and z. r is

used in Eq. 3 to control the size of the target 2D-Gaussian

for the heatmap loss. z is the width of the truncated sine

used to soften the stroke detection target (see Eq. 4).

The results for varying r show the model is fairly robust

to various sizes of the target 2D-Gaussian. Although our

selected value for r of 0.85 yields a slightly lower F1-score

than for r ¼ 0:5, we observed that the mean and median

distance between predicted and actual swimmer locations

increased by a significant margin (see Table 10).

For the soft stroke target parameter z the F1 score went

down dramatically with a large z value (z ¼ 12), but was

Table 7 Comparison of head detection performance of Faster R-CNN

and DeepDASH

LFPF1 (%) Recall (%) Precision (%)

Faster RCNN 62.0 83.5 49.3

Faster RCNN ? track 72.2 71.7 72.7

DeepDASH 92.5 89.1 96.2

DeepDASH ? track 93.0 88.5 97.9

The results include the effect of using the HISORT? tracking algo-

rithm to add and delete detections

Bold indicates the best result for each column

Table 8 In this table we compare the tracking performance of

HISORT? when Faster R-CNN and DeepDASH is used as the

detection algorithm

MOTA IDF1 Frame rate

Faster R-CNN 13.8 43.1 4.8

DeepDASH 66.9 74.1 33.1

We also compare the inference speed of these two detection

algorithms

Bold indicates the best result for each column

Neural Computing and Applications

123

surprisingly robust to a narrow softening (z ¼ 2) compared

to our default z ¼ 5. Choosing a lower z-value results in

very sparse targets leading to class imbalance between

positive and negative cases, whereas choosing a larger z-

value results in positively labelling frames which may not

have any visual features of the stroke’s occurrence (see

Table 11).

6 Conclusion

In this paper we presented DeepDASH, a deep learning-

based automatic swimming analysis system. Tracking

swimmers from a zoomed out 4K video of the whole pool

was very challenging due to the small size of swimmer

heads and environmental interference from splashing and

submersion. We found for this situation, it was vital to

design an object detector that is specifically designed to

detect small objects, using multiple frames as input. Our

solution can take advantage of these problem characteris-

tics to achieve high accuracy at near real time processing

speeds.

More specifically our DeepDASH approach for swim-

mer head detection was found to be far superior to the

popular Faster R-CNN object detection algorithm in both

detection accuracy and speed for this task. DeepDASH

uses our HISORT tracking algorithm to output significantly

longer tracks compared to the existing SORT tracking

algorithm. Finally, DeepDASH is able to accurately detect

strokes by achieving an overall F1 score of 97.5% for

detecting strokes across all 4 stroke styles.

For future work we would like to explore using Deep-

DASH to detect other more challenging events such as

breaths and kicks. Furthermore, adapting our solution to

work for moving cameras would widen the applicability of

our approach to more deployment scenarios. Another

direction for future work is extending our system to other

sports, which may require developing a strategy for han-

dling multiple people in the same region proposal crop.

Compliance with ethical standards

Conflict of interest This work was funded by a competitive innova-

tion fund from the Australian Institute of Sports. The Project is titled

‘‘A software system for automated annotation of swimming videos

using deep learning’’. There are no other conflicts to declare.

References

1. Coco: Common obejcts in context. http://cocodataset.org/.

Accessed 22 Nov 2019

2. Multiple object tracking benchmark. https://motchallenge.net/

3. Bernardin K, Stiefelhagen R (2008) Evaluating multiple object

tracking performance: the CLEAR MOT metrics. EURASIP J

Image Video Process 2008(1):246309. https://doi.org/10.1155/

2008/246309

4. Bewley A, Ge Z, Ott L, Ramos F, Upcroft B (2016) Simple

online and realtime tracking. In: 2016 IEEE international con-

ference on image processing (ICIP), pp 3464–3468. IEEE

5. Buch S, Escorcia V, Ghanem B, Fei-Fei L, Niebles JC (2017)

End-to-end, single-stream temporal action detection in untrim-

med videos. In: BMVC, vol 2, p 7

6. Caba Heilbron F, Carlos Niebles J, Ghanem B (2016) Fast tem-

poral activity proposals for efficient detection of human actions in

untrimmed videos. In: Proceedings of the IEEE conference on

computer vision and pattern recognition (CVPR), pp 1914–1923

7. Chao YW, Vijayanarasimhan S, Seybold B, Ross DA, Deng J,

Sukthankar R (2018) Rethinking the faster r-cnn architecture for

temporal action localization. In: Proceedings of the IEEE

Table 9 This table shows the accuracy of DeepDASH at performing

stroke detection using the F1 score, where a stroke is considered

correctly detected if it is detected within two frames of the ground

truth (inclusive)

Strokes (%) Strokes? (%)

Backstroke 97.7 97.8

Breaststroke 97.0 96.8

Butterfly 90.8 94.9

Freestyle 98.4 98.5

Overall 96.8 97.4

‘‘Strokes?’’ is the result of applying the rule-based operations

described in Sect. 3.4, whereas the ‘‘Strokes’’ results do not apply

these rules

Table 10 Results of varying r values

r LFPF1 (%) Mean dist (cm) Median dist (cm)

0.5 93.2 0.069 0.029

0.85 93.0 0.036 0.024

1.2 92.1 0.039 0.026

where r controls the scale of the target 2d-Gaussian for the heatmap

loss (see Eq. 3). The default r value used in our experiments was 0.85

Bold indicates the best result for each column

Table 11 Results of varying

z values
z F1 score (%)

2 96.10

5 97.40

12 58.20

where z controls the spread of

the soft stroke targets (see

Eq. 4). The default z value used

in our experiments was 5

Bold indicates the best result for

each column

Neural Computing and Applications

123

http://cocodataset.org/
https://motchallenge.net/
https://doi.org/10.1155/2008/246309
https://doi.org/10.1155/2008/246309

conference on computer vision and pattern recognition (CVPR),

pp 1130–1139

8. Dai X, Singh B, Zhang G, Davis LS, Qiu Chen Y (2017) Tem-

poral context network for activity localization in videos. In:

Proceedings of the IEEE international conference on computer

vision (ICCV), pp 5793–5802

9. Duan K, Bai S, Xie L, Qi H, Huang Q, Tian Q (2019) Centernet:

Keypoint triplets for object detection. In: Proceedings of inter-

national conference in computer vision (ICCV)

10. Einfalt M, Zecha D, Lienhart R (2018) Activity-conditioned

continuous human pose estimation for performance analysis of

athletes using the example of swimming. In: 2018 IEEE winter

conference on applications of computer vision (WACV),

pp 446–455. IEEE

11. Everingham M, Van Gool L, Williams CKI, Winn J, Zisserman

A (2012) The PASCAL visual object classes challenge

(VOC2012) results. http://www.pascal-network.org/challenges/

VOC/voc2012/workshop/index.html

12. Fani H, Mirlohi A, Hosseini H, Herperst R (2018) Swim stroke

analytic: front crawl pulling pose classification. In: 2018 25th

IEEE international conference on image processing (ICIP),

pp 4068–4072. IEEE

13. Gao J, Yang Z, Chen K, Sun C, Nevatia R (2017) Turn tap:

temporal unit regression network for temporal action proposals.

In: Proceedings of the IEEE international conference on com-

puter vision (ICCV), pp 3628–3636

14. Girshick R (2015) Fast r-cnn. In: Proceedings of the IEEE

international conference on computer vision (ICCV),

pp 1440–1448

15. Girshick R, Donahue J, Darrell T, Malik J (2014) Rich feature

hierarchies for accurate object detection and semantic segmen-

tation. In: Proceedings of the IEEE conference on computer

vision and pattern recognition(CVPR), pp 580–587

16. Hakozaki K, Kato N, Tanabiki M, Furuyama J, Sato Y, Aoki Y

(2018) Swimmer’s stroke estimation using cnn and multilstm.

J Sig Process 22(4):219–222

17. Hammad M, Pławiak P, Wang K, Acharya UR (2020) Resnet-

attention model for human authentication using ECG signals.

Expert Syst p e12547

18. He K, Gkioxari G, Dollár P, Girshick R (2017) Mask r-cnn. In:

Proceedings of the IEEE international conference on computer

vision (ICCV), pp 2961–2969

19. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for

image recognition. In: Proceedings of the IEEE conference on

computer vision and pattern recognition, pp 770–778

20. Huang Y, Dai Q, Lu Y (2019) Decoupling localization and

classification in single shot temporal action detection. In: IEEE

international conference on multimedia and expo (ICME)

21. Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep

network training by reducing internal covariate shift. arXiv pre-

print arXiv:1502.03167

22. Kuhn HW (1955) The hungarian method for the assignment

problem. Nav Res Log Quart 2(1–2):83–97

23. Law H, Deng J (2018) Cornernet: detecting objects as paired

keypoints. In: Proceedings of the European conference on com-

puter vision (ECCV), pp 734–750

24. Leal-Taixé L, Fenzi M, Kuznetsova A, Rosenhahn B, Savarese S

(2014) Learning an image-based motion context for multiple

people tracking. In: Proceedings of the IEEE conference on

computer vision and pattern recognition (CVPR), pp 3542–3549

25. Leal-Taixé L, Milan A, Reid I, Roth S, Schindler K (2015)

Motchallenge 2015: Towards a benchmark for multi-target

tracking. arXiv preprint arXiv:1504.01942

26. Leal-Taixé L, Pons-Moll G, Rosenhahn B (2011) Everybody

needs somebody: modeling social and grouping behavior on a

linear programming multiple people tracker. In: 2011 IEEE

international conference on computer vision workshops (ICCV

workshops), pp 120–127. IEEE

27. Lin T, Zhao X, Shou Z (2017) Single shot temporal action

detection. In: Proceedings of the 25th ACM international con-

ference on multimedia, pp 988–996. ACM

28. Lin T, Zhao X, Su H, Wang C, Yang M (2018) BSN: boundary

sensitive network for temporal action proposal generation. In:

Proceedings of the European conference on computer vision

(ECCV), pp 3–19

29. Lin TY, Dollár P, Girshick R, He K, Hariharan B, Belongie S

(2017) Feature pyramid networks for object detection. In: Pro-

ceedings of the IEEE conference on computer vision and pattern

recognition(CVPR), pp 2117–2125

30. Lin TY, Goyal P, Girshick R, He K, Dollár P (2017) Focal loss

for dense object detection. In: Proceedings of the IEEE interna-

tional conference on computer vision (ICCV), pp 2980–2988

31. Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu CY, Berg

AC (2016) SSD: Single shot multibox detector. In: European

conference on computer vision, pp 21–37. Springer

32. Nibali A, He Z, Morgan S, Greenwood D (2017) Extraction and

classification of diving clips from continuous video footage. In:

Proceedings of the IEEE conference on computer vision and

pattern recognition workshops, pp 38–48

33. Nibali A, He Z, Morgan S, Prendergast L (2018) Numerical

coordinate regression with convolutional neural networks. arXiv

preprint arXiv:1801.07372

34. Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z, Lin

Z, Desmaison A, Antiga L, Lerer A (2017) Automatic differen-

tiation in pytorch

35. Pirsiavash H, Ramanan D, Fowlkes CC (2011) Globally-optimal

greedy algorithms for tracking a variable number of objects. In:

Proceedings of the IEEE international conference on computer

vision (ICCV), pp 1201–1208. IEEE

36. Pławiak P, Abdar M, Acharya UR (2019) Application of new

deep genetic cascade ensemble of svm classifiers to predict the

australian credit scoring. Appl Soft Comput 84:105740

37. Pławiak P, Abdar M, Pławiak J, Makarenkov V, Acharya UR

(2020) Dghnl: a new deep genetic hierarchical network of
learners for prediction of credit scoring. Inf Sci 516:401–418

38. Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only

look once: unified, real-time object detection. In: Proceedings of

the IEEE conference on computer vision and pattern recogni-

tion(CVPR), pp 779–788

39. Redmon J, Farhadi A (2017) Yolo9000: better, faster, stronger.

In: Proceedings of the IEEE conference on computer vision and

pattern recognition(CVPR), pp 7263–7271

40. Ren S, He K, Girshick R, Sun J (2015) Faster r-cnn: towards real-

time object detection with region proposal networks. In:

Advances in neural information processing systems, pp 91–99

41. Ristani E, Solera F, Zou R, Cucchiara R, Tomasi C (2016) Per-

formance measures and a data set for multi-target, multi-camera

tracking. In: Computer vision—ECCV 2016 workshops,

pp 17–35. Springer International Publishing, Cham

42. Sadeghian A, Alahi A, Savarese S (2017) Tracking the untrack-

able: Learning to track multiple cues with long-term dependen-

cies. In: Proceedings of the IEEE international conference on

computer vision (CVPR), pp 300–311

43. Shou Z, Chan J, Zareian A, Miyazawa K, Chang SF (2017) Cdc:

Convolutional-de-convolutional networks for precise temporal

action localization in untrimmed videos. In: Proceedings of the

IEEE conference on computer vision and pattern recognition

(CVPR), pp 5734–5743

44. Shou Z, Wang D, Chang SF (2016) Temporal action localization

in untrimmed videos via multi-stage cnns. In: Proceedings of the

IEEE conference on computer vision and pattern recognition

(CVPR), pp 1049–1058

Neural Computing and Applications

123

http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html
http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1504.01942
http://arxiv.org/abs/1801.07372

45. Tian Z, Shen C, Chen H, He T (2019) FCOS: fully convolutional

one-stage object detection. In: Proceedings of international con-

ference in computer vision (ICCV)

46. Tompson JJ, Jain A, LeCun Y, Bregler C (2014) Joint training of

a convolutional network and a graphical model for human pose

estimation. In: Advances in neural information processing sys-

tems, pp 1799–1807

47. Tsumita T, Shishido H, Kitahara I, Kameda Y (2019) Swimmer

position estimation by lane rectification. In: International work-

shop on advanced image technology (IWAIT) 2019, vol 11049,

p 110490E. International Society for Optics and Photonics

48. Tuncer T, Ertam F, Dogan S, Aydemir E, Pławiak P (2020)

Ensemble residual network-based gender and activity recognition

method with signals. J Supercomput 76(3):2119–2138

49. Victor B, He Z, Morgan S, Miniutti D (2017) Continuous video to

simple signals for swimming stroke detection with convolutional

neural networks. In: Proceedings of the IEEE conference on

computer vision and pattern recognition workshops, pp 66–75

50. Wang M, Liu Y, Huang Z (2017) Large margin object tracking

with circulant feature maps. In: Proceedings of the IEEE con-

ference on computer vision and pattern recognition (CVPR),

pp 4021–4029

51. Wojke N, Bewley A, Paulus D (2017) Simple online and realtime

tracking with a deep association metric. In: 2017 IEEE interna-

tional conference on image processing (ICIP), pp 3645–3649.

IEEE

52. Wu Y, He K (2018) Group normalization. In: Proceedings of the

European conference on computer vision (ECCV), pp 3–19

53. Xu H, Das A, Saenko K (2017) R-c3d: region convolutional 3d

network for temporal activity detection. In: Proceedings of the

IEEE international conference on computer vision (ICCV),

pp 5783–5792

54. Zecha D, Einfalt M, Lienhart R (2019) Refining joint locations

for human pose tracking in sports videos. In: Proceedings of the

IEEE conference on computer vision and pattern recognition

workshops, pp 0–0

55. Zhang L, Li Y, Nevatia R (2008) Global data association for

multi-object tracking using network flows. In: 2008 IEEE con-

ference on computer vision and pattern recognition (CVPR),

pp 1–8. IEEE

56. Zhao Y, Xiong Y, Wang L, Wu Z, Tang X, Lin D (2017)

Temporal action detection with structured segment networks. In:

Proceedings of the IEEE international conference on computer

vision (ICCV), pp 2914–2923

57. Zhu J, Yang H, Liu N, Kim M, Zhang W, Yang MH (2018)

Online multi-object tracking with dual matching attention net-

works. In: Proceedings of the European conference on computer

vision (ECCV), pp 366–382

58. Zisserman RHA (2004) Multiple view geometry in computer

vision. Cambridge University Press, Cambridge

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications

123

	The detection, tracking, and temporal action localisation of swimmers for automated analysis
	Abstract
	Introduction
	Related works
	Object detection
	Multi-object tracking
	Temporal action localisation for untrimmed video
	Computer vision for swimming analysis

	DeepDASH
	Region proposal generation phase
	Heatmap prediction
	Extracting crop coordinates
	Crop proposal refinement

	Refinement phase
	Swimmer coordinates
	Stroke probabilities
	Combined loss

	Tracking
	Hierarchical SORT (HISORT)
	Post-processing of tracks

	Stroke detection
	Mapping from image to pool space

	Experimental setup
	Dataset
	Training
	Evaluation metrics

	Experimental results
	Head detection ablation and stratification study
	Tracking algorithm results
	Comparing our head detection algorithm to faster R-CNN
	Stroke detection
	Effect of varying hyper-parameter values

	Conclusion
	References

